Skip to main content
Glama

MCP Brain Service

by jomapps
character.py•2.63 kB
"""Character data model.""" from datetime import datetime from typing import List from uuid import UUID, uuid4 from pydantic import BaseModel, Field class Character(BaseModel): """Character data model.""" id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the character") project_id: str = Field(..., description="Identifier for the project this character belongs to") name: str = Field(..., description="The name of the character") personality_description: str = Field(..., description="A textual description of the character's personality") appearance_description: str = Field(..., description="A textual description of the character's appearance") embedding_personality: List[float] = Field(default_factory=list, description="Embedding vector for the personality description") embedding_appearance: List[float] = Field(default_factory=list, description="Embedding vector for the appearance description") created_at: datetime = Field(default_factory=datetime.utcnow, description="Timestamp of when the character was created") updated_at: datetime = Field(default_factory=datetime.utcnow, description="Timestamp of when the character was last updated") class Config: """Pydantic model configuration.""" json_encoders = { datetime: lambda v: v.isoformat() } class CharacterCreate(BaseModel): """Character creation model.""" project_id: str = Field(..., description="Identifier for the project this character belongs to") name: str = Field(..., description="The name of the character") personality_description: str = Field(..., description="A textual description of the character's personality") appearance_description: str = Field(..., description="A textual description of the character's appearance") class CharacterResponse(BaseModel): """Character response model for API.""" id: str name: str project_id: str personality_description: str appearance_description: str created_at: datetime updated_at: datetime class Config: """Pydantic model configuration.""" json_encoders = { datetime: lambda v: v.isoformat() } class CharacterSearchResult(BaseModel): """Character search result model.""" id: str name: str similarity_score: float = Field(..., ge=0.0, le=1.0, description="Similarity score between 0 and 1") class Config: """Pydantic model configuration.""" json_encoders = { datetime: lambda v: v.isoformat() }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jomapps/mcp-brain-service'

If you have feedback or need assistance with the MCP directory API, please join our Discord server