Skip to main content
Glama

MCP Brain Service

by jomapps
RETRIV_INTEGRATION_SUMMARY.md6.41 kB
# Retriv Integration - Implementation Summary ## ✅ Completed Tasks ### 1. Dependencies Added - **File**: `requirements.txt` - **Changes**: Added `retriv>=0.2.3` and testing dependencies - **Status**: ✅ Installed and verified ### 2. Retriv Service Implementation - **File**: `src/services/retriv_service.py` - **Features**: - Hybrid search (BM25 + embeddings) - Document indexing with in-memory cache - Project-based filtering - Custom metadata filters - Document deletion and project clearing - Statistics and monitoring - Graceful degradation if retriv unavailable - **Status**: ✅ Implemented ### 3. Unit Tests - **File**: `tests/unit/test_retriv_service.py` - **Coverage**: - Initialization tests (3 tests) - Indexing tests (3 tests) - Search tests (4 tests) - Deletion tests (2 tests) - Stats tests (1 test) - Singleton pattern test (1 test) - **Status**: ✅ All 14 tests passing ### 4. Integration Tests - **File**: `tests/integration/test_retriv_integration.py` - **Coverage**: - Real retriv library integration - Hybrid search capabilities - Filtering functionality - Document management - Edge cases - **Status**: ✅ Created (requires retriv to be installed) ### 5. Test Automation - **File**: `test_retriv_setup.sh` - **Features**: - Automated dependency installation - Verification of retriv import - Unit test execution - Integration test execution - Quick functionality test - **Status**: ✅ Created and executable ### 6. Deployment Documentation - **File**: `RETRIV_DEPLOYMENT.md` - **Contents**: - Pre-deployment checklist - Step-by-step deployment guide - Post-deployment monitoring - Rollback plan - Troubleshooting guide - Performance expectations - **Status**: ✅ Complete ## 📊 Test Results ### Unit Tests ``` 14 passed, 15 warnings in 11.21s ``` All unit tests passing successfully: - ✅ Service initialization - ✅ Document indexing - ✅ Hybrid search - ✅ Filtering (project_id and custom) - ✅ Document deletion - ✅ Project clearing - ✅ Statistics - ✅ Singleton pattern ## 🎯 What Retriv Provides ### Before (Semantic Only) - Query: "Aladdin's vest in scene 3" - Uses only semantic embeddings - May miss exact keywords like "vest" or "scene 3" ### After (Hybrid Search) - Query: "Aladdin's vest in scene 3" - **BM25** catches: "Aladdin", "vest", "scene", "3" (exact matches) - **Embeddings** catch: semantic meaning of clothing, appearance - **Combined**: Better ranking and more accurate results ## 📦 Dependencies Installed ### Core Dependencies - `retriv>=0.2.3` - Hybrid search library - `torch` - Deep learning framework (for embeddings) - `transformers` - Sentence transformers - `faiss-cpu` - Vector similarity search - `scikit-learn` - Machine learning utilities - `nltk` - Natural language processing ### Testing Dependencies - `pytest>=7.4.0` - `pytest-asyncio>=0.21.0` - `pytest-cov>=4.1.0` - `httpx>=0.25.0` ## 🚀 Ready for Deployment ### Pre-Deployment Checklist - ✅ Dependencies added to requirements.txt - ✅ Retriv service implemented - ✅ Unit tests created and passing - ✅ Integration tests created - ✅ Test automation script created - ✅ Deployment documentation complete - ✅ Rollback plan documented ### Deployment Steps 1. **Install Dependencies** ```bash cd /var/www/movie-generation-platform/services/mcp-brain-service source venv/bin/activate pip install -r requirements.txt ``` 2. **Run Tests** ```bash ./test_retriv_setup.sh ``` 3. **Restart Service** ```bash pm2 restart brain-api ``` 4. **Monitor** ```bash pm2 logs brain-api pm2 monit ``` ## 📈 Expected Impact ### Resource Usage - **Disk**: +80MB for sentence-transformers model - **Memory**: +100-200MB during indexing - **CPU**: Slight increase during search (negligible) - **Startup**: +2-3 seconds for model loading (lazy initialization) ### Performance - **Better Search Results**: Hybrid search combines keyword + semantic - **Backward Compatible**: Existing code still works - **No API Changes**: Same interfaces, just better results - **Graceful Degradation**: Service works even if retriv fails ## 🔍 How to Use ### Basic Usage ```python from src.services.retriv_service import get_retriv_service # Get service instance retriv = get_retriv_service() # Initialize (lazy loading) await retriv.initialize() # Index documents documents = [ { "id": "char_1", "text": "Aladdin wears a brown vest", "metadata": {"project_id": "proj_1", "type": "character"} } ] await retriv.index_documents(documents) # Search results = await retriv.search( query="brown vest", project_id="proj_1", top_k=5 ) # Get stats stats = retriv.get_stats() ``` ## 🛡️ Safety Features 1. **Graceful Degradation**: If retriv fails to import, service continues without it 2. **Error Handling**: All operations wrapped in try-catch 3. **Logging**: Comprehensive logging for debugging 4. **In-Memory Cache**: Documents cached for re-indexing 5. **Backward Compatible**: No breaking changes to existing code ## 📝 Next Steps 1. **Deploy to Production** - Follow RETRIV_DEPLOYMENT.md guide - Monitor for 24 hours - Collect feedback 2. **Integration with Knowledge Service** - Enhance existing search methods - Add hybrid search option - Update MCP tools 3. **Optimization** (if needed) - Adjust Retriv parameters - Fine-tune model selection - Optimize indexing strategy ## 🆘 Support ### If Issues Occur 1. Check logs: `pm2 logs brain-api` 2. Review RETRIV_DEPLOYMENT.md troubleshooting section 3. Run test script: `./test_retriv_setup.sh` 4. Rollback if necessary (see RETRIV_DEPLOYMENT.md) ### Key Files - `src/services/retriv_service.py` - Main implementation - `tests/unit/test_retriv_service.py` - Unit tests - `tests/integration/test_retriv_integration.py` - Integration tests - `RETRIV_DEPLOYMENT.md` - Deployment guide - `test_retriv_setup.sh` - Test automation ## ✨ Success Criteria Deployment is successful when: - ✅ Service starts without errors - ✅ PM2 shows "online" status - ✅ No import errors in logs - ✅ Health endpoint responds - ✅ Memory usage is stable - ✅ Search functionality works - ✅ No increase in error rate --- **Status**: Ready for Production Deployment **Date**: 2025-10-01 **Service**: mcp-brain-service (brain.ft.tc)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jomapps/mcp-brain-service'

If you have feedback or need assistance with the MCP directory API, please join our Discord server