IMPLEMENTATION_SUMMARY.md•9.76 kB
# RAG Semantic Search - Implementation Summary
## Changes Overview
Successfully implemented RAG-style semantic search for the MCP Markdown Manager. Total changes: **1,304 insertions** across 16 files.
## Key Components Added
### 1. Core Services (3 new files)
#### `src/backend/services/chunking.ts` (152 lines)
- Intelligent markdown chunking by headings
- Configurable chunk size and overlap
- Heading path preservation for context
- Content hash generation for change detection
#### `src/backend/services/embedding.ts` (96 lines)
- Dual provider support: Ollama (local) and OpenAI
- Single and batch embedding generation
- Cosine similarity calculation
- Error handling and retry logic
#### `src/backend/services/vectorIndex.ts` (197 lines)
- JSONL-based vector storage
- Upsert and delete operations
- Semantic search with similarity scoring
- Index rebuild functionality
- Statistics gathering
### 2. Integration Points
#### `src/backend/services/articles.ts` (+39 lines)
- Auto-indexing on article creation
- Re-indexing on article updates
- Index cleanup on article deletion
- Feature flag support
#### `src/backend/routes/api.ts` (+28 lines)
- New `/api/search` endpoint
- Query parameter handling
- Authentication enforcement
- Error responses
#### `src/backend/mcp/server.ts` (+106 lines, restructured)
- New `semanticSearch` MCP tool
- Dynamic tool list based on feature flag
- Proper TypeScript typing
- Error handling
### 3. Frontend Updates
#### `src/frontend/pages/Home.tsx` (+79 lines)
- Search mode toggle (Title vs Semantic)
- Dual search result rendering
- Similarity score display
- Heading path visualization
- Snippet preview
#### `src/frontend/styles/main.css` (+84 lines)
- Search mode toggle styling
- Search result cards
- Score badges
- Hover effects
- Responsive design
#### `src/frontend/components/Header.tsx` (+7 lines)
- Updated API documentation
- New endpoint listing
- MCP tool documentation
### 4. Configuration & Documentation
#### `.env.example` (+9 lines)
```bash
SEMANTIC_SEARCH_ENABLED=true
EMBEDDING_PROVIDER=ollama
EMBEDDING_MODEL=nomic-embed-text
OLLAMA_BASE_URL=http://localhost:11434
OPENAI_API_KEY=
CHUNK_SIZE=500
CHUNK_OVERLAP=50
```
#### `README.md` (+155 lines)
- Feature overview
- Environment variables
- Setup instructions
- API documentation
- Usage examples
#### `SEMANTIC_SEARCH.md` (301 lines, new)
- Comprehensive guide
- Architecture explanation
- Configuration options
- Troubleshooting
- Performance benchmarks
### 5. Tools & Scripts
#### `scripts/reindex.ts` (24 lines)
- Full index rebuild command
- Statistics reporting
- Error handling
- Usage: `bun run reindex`
#### `package.json` (+2 dependencies, +1 script)
- Added `ollama` package
- Added `openai` package
- Added `reindex` script
## Architecture
```
┌─────────────────────────────────────────────────────────────┐
│ User Input │
│ (Web UI, API, or MCP) │
└────────────────────────┬────────────────────────────────────┘
│
▼
┌──────────────────────┐
│ Search Query │
└──────────┬───────────┘
│
┌───────────────┴────────────────┐
│ │
▼ ▼
┌─────────────────┐ ┌──────────────────┐
│ Title Search │ │ Semantic Search │
│ (articles.ts) │ │ (vectorIndex.ts) │
└─────────────────┘ └────────┬─────────┘
│
▼
┌─────────────────────┐
│ Generate Query │
│ Embedding │
│ (embedding.ts) │
└──────────┬──────────┘
│
▼
┌─────────────────────┐
│ Load Vector Index │
│ (index.vectors.jsonl)│
└──────────┬──────────┘
│
▼
┌─────────────────────┐
│ Calculate Cosine │
│ Similarity │
└──────────┬──────────┘
│
▼
┌─────────────────────┐
│ Return Top K │
│ Results + Scores │
└─────────────────────┘
```
## Data Flow
### Article Creation
```
1. User creates article
2. Article saved to DATA_DIR/article.md
3. Content parsed and chunked (chunking.ts)
4. Chunks embedded (embedding.ts with Ollama/OpenAI)
5. Chunk vectors saved to index.vectors.jsonl
6. Article returned to user
```
### Semantic Search
```
1. User submits query
2. Query embedded using same model
3. Index loaded from index.vectors.jsonl
4. Cosine similarity computed for all chunks
5. Top K chunks sorted by score
6. Results formatted with snippets
7. Response returned with metadata
```
## API Examples
### REST API - Semantic Search
```bash
GET /api/search?query=machine+learning+models&k=5
Authorization: Bearer YOUR_TOKEN
Response:
{
"chunk": {
"filename": "ml-intro.md",
"title": "Introduction to ML",
"headingPath": ["# ML Basics", "## Training"],
"text": "Training models involves..."
},
"score": 0.89,
"snippet": "Training models involves feeding data..."
}
```
### MCP Tool
```json
{
"method": "tools/call",
"params": {
"name": "semanticSearch",
"arguments": {
"query": "neural network architectures",
"k": 10
}
}
}
```
## Testing
Created test infrastructure:
- Sample articles in `test-data/`
- Chunking validation script
- Successfully tested with 3 sample articles
- Verified chunk generation and metadata
Test results:
```
✓ Chunking produces correct structure
✓ Heading paths preserved
✓ Chunk IDs generated properly
✓ Text content extracted correctly
```
## Performance Characteristics
### Index Size
- ~1KB per chunk (typical)
- 5-10 chunks per average article
- 100 articles ≈ 500KB-1MB index file
### Speed (estimated)
- Ollama embed: ~50ms per chunk
- OpenAI embed: ~200ms per chunk
- Search query: ~100ms
- Reindex 100 articles: ~2-5 minutes
### Memory
- Minimal overhead
- Index loaded on-demand
- Streaming for large operations
## Backwards Compatibility
✅ **Fully backwards compatible**
- Feature disabled by default
- Existing APIs unchanged
- Title search still available
- No breaking changes
## Security
- ✅ Authentication required for all endpoints
- ✅ Optional local-only embeddings (Ollama)
- ✅ API keys stored in environment
- ✅ Index file in data directory
- ⚠️ Index not encrypted (consider for sensitive data)
## Future Enhancements
Potential improvements for future releases:
1. SQLite vector store for performance
2. Hybrid search (title + semantic)
3. Multi-model embedding support
4. Embedding cache layer
5. GPU acceleration
6. Vector compression
7. Incremental updates optimization
## Files Changed Summary
| Category | Files | Lines Added | Lines Removed |
|----------|-------|-------------|---------------|
| Backend Services | 6 | +512 | -3 |
| Frontend | 3 | +263 | -80 |
| Documentation | 2 | +456 | 0 |
| Configuration | 3 | +14 | -5 |
| Scripts | 1 | +24 | 0 |
| Dependencies | 2 | +35 | 0 |
| **Total** | **16** | **+1,304** | **-88** |
## Deployment Notes
### Requirements
- Bun runtime (unchanged)
- Ollama (if using local embeddings)
- OpenAI API key (if using OpenAI)
### Environment Setup
1. Set `SEMANTIC_SEARCH_ENABLED=true`
2. Choose provider and configure
3. Run `bun run reindex` for existing articles
4. New articles index automatically
### Docker Considerations
- Volume mount for index persistence
- Environment variables via Docker
- Ollama container networking if using local
## Validation
✅ TypeScript compilation successful
✅ All imports resolved
✅ No type errors
✅ Frontend builds successfully
✅ Chunking tested and validated
✅ Documentation complete
## Success Metrics
- **Code Quality**: Type-safe, modular, well-documented
- **Performance**: Efficient chunking and search
- **Usability**: Simple setup, clear documentation
- **Flexibility**: Multiple providers, configurable
- **Integration**: Seamless with existing codebase