Skip to main content
Glama

Article Manager MCP Server

by joelmnz
README.md•21.1 kB
# MCP Markdown Manager A complete full-stack TypeScript monolithic markdown article management system designed for AI agents to save and manage research content. This self-hosted single-user POC system handles hundreds of markdown articles with multiple interfaces: Web UI, REST API, and MCP server. ## Features - šŸ“ **Markdown-based articles** with frontmatter support - šŸ” **Search functionality** with partial title matching - 🧠 **Semantic search** with RAG-style vector embeddings (optional) - šŸŽØ **Dark/Light theme** toggle - šŸ“± **Mobile-first responsive design** - šŸ“² **Progressive Web App (PWA)** support for offline access - šŸ” **Bearer token authentication** for all interfaces - 🌐 **REST API** for programmatic access - šŸ¤– **MCP server** integration for AI agent access - 🐳 **Docker support** with multi-stage builds and non-root user - ⚔ **Bun runtime** for fast TypeScript execution - šŸ“Š **Request logging** for monitoring and debugging ## Architecture ### Monolithic Structure ```text /src /backend /routes - REST API endpoints /mcp - MCP server tools /services - Shared business logic (articles CRUD) /middleware - Auth, error handling server.ts - Main server (API + MCP + static serving) /frontend /components - React components /pages - Page components /styles - CSS files App.tsx ``` ### Technology Stack - **Runtime**: Bun (fast TypeScript execution) - **Backend**: TypeScript, @modelcontextprotocol/sdk - **Frontend**: React, react-markdown - **Storage**: File-based markdown with frontmatter - **Deployment**: Docker with oven/bun base image ## Quick Start ### Prerequisites - [Bun](https://bun.sh) installed (v1.0+) - Docker and Docker Compose (for containerized deployment) ### Development Setup #### 1. Clone and install dependencies ```bash cd article_manager bun install ``` #### 2. Configure environment ```bash cp .env.example .env # Edit .env and set your AUTH_TOKEN ``` #### 3. Run development servers Terminal 1 (Backend): ```bash bun run dev:backend ``` Terminal 2 (Frontend): ```bash bun run dev:frontend ``` #### 4. Access the application - Web UI: http://localhost:5000 - API: http://localhost:5000/api/* - MCP: http://localhost:5000/mcp To test the MCP Server you can use the MCP inspector ```bash npx @modelcontextprotocol/inspector ``` ### Production Build ```bash # Build frontend bun run build # Start production server bun run start ``` ## Progressive Web App (PWA) The MCP Markdown Manager includes full PWA support, allowing you to: - **Install** the app on your device (mobile or desktop) - **Work offline** with cached articles and assets - **Access** the app from your home screen like a native app ### Installation When you visit the web app in a supported browser, you'll see an install prompt. Click "Install" to add it to your home screen or desktop. Alternatively, you can manually install: - **Chrome/Edge**: Click the install icon in the address bar - **Safari (iOS)**: Tap the Share button → "Add to Home Screen" - **Firefox**: Look for the install banner at the bottom of the page ### PWA Features - **Offline Mode**: Service worker caches static assets and API responses - **App-like Experience**: Runs in standalone mode without browser UI - **Custom Icons**: Optimized icons for different screen sizes (192x192, 512x512) - **Theme Integration**: Matches your selected dark/light theme preference ### Technical Details The PWA implementation includes: - `manifest.json` - Web app manifest with metadata and icons - `sw.js` - Service worker for offline caching and asset management - PWA meta tags in HTML for proper installation behavior - Automatic service worker registration on app load ## Docker Deployment ### Using Docker Compose (Recommended) #### 1. Configure environment ```bash cp .env.example .env # Edit .env and set AUTH_TOKEN ``` #### 2. Start the container ```bash docker-compose up -d ``` #### 3. View logs ```bash docker-compose logs -f ``` #### 4. Stop the container ```bash docker-compose down ``` ### Using Docker directly ```bash # Build image docker build -t article-manager . # Run container docker run -d \ -p 5000:5000 \ -e AUTH_TOKEN=your-secret-token \ -v $(pwd)/data:/data \ --name article-manager \ article-manager ``` ### GitHub Container Registry To push to GitHub Container Registry: ```bash # Build and tag docker build -t ghcr.io/YOUR_USERNAME/article-manager:latest . # Login to GHCR echo $GITHUB_TOKEN | docker login ghcr.io -u YOUR_USERNAME --password-stdin # Push docker push ghcr.io/YOUR_USERNAME/article-manager:latest ``` ## Environment Variables | Variable | Required | Default | Description | |----------|----------|---------|-------------| | `AUTH_TOKEN` | Yes | - | Authentication token for all interfaces | | `DATA_DIR` | No | `/data` | Directory where markdown articles are stored | | `PORT` | No | `5000` | Server port | | `NODE_ENV` | No | `development` | Environment mode | | `SEMANTIC_SEARCH_ENABLED` | No | `false` | Enable semantic search with vector embeddings | | `EMBEDDING_PROVIDER` | No | `ollama` | Embedding provider: `ollama` or `openai` | | `EMBEDDING_MODEL` | No | `nomic-embed-text` | Model to use for embeddings | | `OLLAMA_BASE_URL` | No | `http://localhost:11434` | Ollama server URL | | `OPENAI_API_KEY` | No | - | OpenAI API key (required if using OpenAI provider) | | `CHUNK_SIZE` | No | `500` | Number of words per chunk for semantic search | | `CHUNK_OVERLAP` | No | `50` | Number of overlapping words between chunks | ## Semantic Search (RAG) The system supports optional semantic search using vector embeddings for more intelligent content discovery. When enabled, articles are automatically chunked and embedded, allowing similarity-based search across content. ### Setup 1. **Enable semantic search** in your `.env`: ```bash SEMANTIC_SEARCH_ENABLED=true ``` 2. **Choose an embedding provider**: **Option A: Ollama (Local, Recommended)** ```bash EMBEDDING_PROVIDER=ollama EMBEDDING_MODEL=nomic-embed-text OLLAMA_BASE_URL=http://localhost:11434 ``` First, install and start Ollama: ```bash # Install Ollama (see https://ollama.ai) curl -fsSL https://ollama.ai/install.sh | sh # Pull the embedding model ollama pull nomic-embed-text ``` **Option B: OpenAI** ```bash EMBEDDING_PROVIDER=openai EMBEDDING_MODEL=text-embedding-3-small OPENAI_API_KEY=your-api-key-here ``` 3. **Build the initial index**: ```bash bun run reindex ``` This will process all existing articles and create the vector index at `DATA_DIR/index.vectors.jsonl`. ### How It Works - **Automatic indexing**: New articles are automatically chunked and embedded on creation/update - **Chunk-based**: Articles are split by headings and then into smaller chunks with overlap - **Vector storage**: Embeddings stored in JSONL format (`index.vectors.jsonl`) in data directory - **Cosine similarity**: Search uses cosine similarity to find relevant chunks - **Heading context**: Results include the heading path for better context ### Using Semantic Search **Web UI**: Toggle between "Title Search" and "Semantic Search" in the search form **REST API**: ```bash GET /api/search?query=your+search&k=5 Authorization: Bearer YOUR_TOKEN ``` **MCP Tool**: ```json { "method": "tools/call", "params": { "name": "semanticSearch", "arguments": { "query": "your search query", "k": 5 } } } ``` ### Reindexing If you change embedding models or need to rebuild the index: ```bash bun run reindex ``` ## REST API Documentation All API endpoints require Bearer token authentication via the `Authorization` header: ```html Authorization: Bearer YOUR_AUTH_TOKEN ``` ### Endpoints #### Health Check ```http GET /health ``` Returns server health status (no auth required). **Response:** ```json { "status": "ok" } ``` #### List Articles ```http GET /api/articles ``` Returns all articles with metadata, sorted by creation date (newest first). **Response:** ```json [ { "filename": "my-article.md", "title": "My Article", "created": "2025-01-15T10:30:00Z" } ] ``` #### Search Articles ```http GET /api/articles?q=search+term ``` Search articles by title (partial match, case-insensitive). **Query Parameters:** - `q` - Search query string **Response:** ```json [ { "filename": "matching-article.md", "title": "Matching Article", "created": "2025-01-15T10:30:00Z" } ] ``` #### Semantic Search ```http GET /api/search?query=search+query&k=5 ``` Perform semantic search across article content using vector embeddings. Returns chunks of content ranked by similarity. **Query Parameters:** - `query` - Search query string (required) - `k` - Number of results to return (default: 5) **Response:** ```json [ { "chunk": { "filename": "article.md", "title": "Article Title", "headingPath": ["# Main Heading", "## Subheading"], "text": "Full chunk text..." }, "score": 0.85, "snippet": "Truncated preview of the chunk..." } ] ``` **Note:** Requires `SEMANTIC_SEARCH_ENABLED=true` in environment. #### Read Article ```http GET /api/articles/:filename ``` Read a single article by filename. **Response:** ```json { "filename": "my-article.md", "title": "My Article", "content": "Article content in markdown...", "created": "2025-01-15T10:30:00Z" } ``` **Error Response (404):** ```json { "error": "Article not found" } ``` #### Create Article ```http POST /api/articles Content-Type: application/json { "title": "My New Article", "content": "Article content in markdown..." } ``` Creates a new article. Filename is auto-generated from title (e.g., "My New Article" → "my-new-article.md"). **Response (201):** ```json { "filename": "my-new-article.md", "title": "My New Article", "content": "Article content in markdown...", "created": "2025-01-15T10:30:00Z" } ``` **Error Response (400):** ```json { "error": "Title and content are required" } ``` #### Update Article ```http PUT /api/articles/:filename Content-Type: application/json { "title": "Updated Title", "content": "Updated content..." } ``` Updates an existing article. Preserves original creation date. **Response:** ```json { "filename": "my-article.md", "title": "Updated Title", "content": "Updated content...", "created": "2025-01-15T10:30:00Z" } ``` #### Delete Article ```http DELETE /api/articles/:filename ``` Deletes an article. **Response:** ```json { "success": true } ``` ### Authentication Errors All authenticated endpoints return 401 for invalid/missing tokens: ```json { "error": "Unauthorized" } ``` ## MCP Server Documentation The MCP (Model Context Protocol) server provides AI agents with tools to manage articles. ### Endpoint ```http POST /mcp Authorization: Bearer YOUR_AUTH_TOKEN Content-Type: application/json ``` ### Available Tools #### listArticles List all articles with metadata. **Input Schema:** ```json { "method": "tools/call", "params": { "name": "listArticles", "arguments": {} } } ``` **Response:** ```json { "content": [ { "type": "text", "text": "[{\"filename\":\"article.md\",\"title\":\"Article\",\"created\":\"2025-01-15T10:30:00Z\"}]" } ] } ``` #### searchArticles Search articles by title. **Input Schema:** ```json { "method": "tools/call", "params": { "name": "searchArticles", "arguments": { "query": "search term" } } } ``` #### semanticSearch Perform semantic search across article content using vector embeddings. Available when `SEMANTIC_SEARCH_ENABLED=true`. **Input Schema:** ```json { "method": "tools/call", "params": { "name": "semanticSearch", "arguments": { "query": "search query", "k": 5 } } } ``` **Response:** ```json { "content": [ { "type": "text", "text": "[{\"chunk\":{\"filename\":\"article.md\",\"title\":\"Article\",\"headingPath\":[\"# Heading\"],\"text\":\"...\"},\"score\":0.85,\"snippet\":\"...\"}]" } ] } ``` #### readArticle Read a single article. **Input Schema:** ```json { "method": "tools/call", "params": { "name": "readArticle", "arguments": { "filename": "my-article.md" } } } ``` #### createArticle Create a new article. **Input Schema:** ```json { "method": "tools/call", "params": { "name": "createArticle", "arguments": { "title": "New Article", "content": "Article content..." } } } ``` #### updateArticle Update an existing article. **Input Schema:** ```json { "method": "tools/call", "params": { "name": "updateArticle", "arguments": { "filename": "my-article.md", "title": "Updated Title", "content": "Updated content..." } } } ``` #### deleteArticle Delete an article. **Input Schema:** ```json { "method": "tools/call", "params": { "name": "deleteArticle", "arguments": { "filename": "my-article.md" } } } ``` ### List Available Tools ```json { "method": "tools/list" } ``` ### Using with Agent Zero [Agent Zero](https://github.com/agent0ai/agent-zero) is an AI agent framework that supports MCP servers via the Streamable HTTP transport. To connect this MCP server to Agent Zero: 1. **Start the MCP Markdown Manager** with a configured `AUTH_TOKEN`: ```bash docker run -d -p 8097:5000 \ -e AUTH_TOKEN="your-secret-token-here" \ -e MCP_SERVER_ENABLED="true" \ -v $(pwd)/data:/data \ ghcr.io/joelmnz/mcp-markdown-manager:latest ``` 2. **Configure Agent Zero** by adding the following to your `tmp/settings.json` under the `mcp_servers` key: ```json { "name": "mcp-markdown-manager", "description": "Markdown article manager for research and notes", "type": "streaming-http", "url": "http://localhost:8097/mcp", "headers": { "Authorization": "Bearer your-secret-token-here" }, "disabled": false } ``` **Important Notes:** - Replace `your-secret-token-here` with your actual `AUTH_TOKEN` - If running both Agent Zero and MCP server in Docker, use the appropriate network hostname instead of `localhost` - The `type: "streaming-http"` is required for proper MCP protocol support - The server uses the MCP Streamable HTTP transport specification with session management 3. **Verify the connection** by checking Agent Zero logs for successful tool discovery. You should see 6 tools registered: - `mcp_markdown_manager.listArticles` - `mcp_markdown_manager.searchArticles` - `mcp_markdown_manager.readArticle` - `mcp_markdown_manager.createArticle` - `mcp_markdown_manager.updateArticle` - `mcp_markdown_manager.deleteArticle` 4. **Use the tools** by instructing Agent Zero, for example: - "Create a new article about Python decorators" - "List all my articles" - "Search for articles about machine learning" **Transport Details:** - The server implements the MCP Streamable HTTP transport protocol - Session management is handled automatically with `mcp-session-id` headers - POST requests are used for initialization and method calls - GET requests establish Server-Sent Event (SSE) streams for real-time updates - DELETE requests terminate sessions ## Article Format Articles are stored as markdown files with YAML frontmatter: ```markdown --- title: Article Title created: 2025-01-15T10:30:00Z --- # Article Title Article content goes here... ## Section More content... ``` ### Filename Generation - User provides title when creating articles - Filename is auto-generated: "My Article Name" → "my-article-name.md" - Title is extracted from first `#` heading in markdown for display - Filename may differ from displayed title ### Frontmatter Fields - `title`: Article title (string) - `created`: ISO 8601 timestamp (string) If frontmatter is missing, the system falls back to file system timestamps. ## Web UI Usage ### Login 1. Navigate to http://localhost:5000 2. Enter your AUTH_TOKEN 3. Click "Login" ### Home Page - View last 10 articles (newest first) - Search articles by title - Click "New Article" to create - Click any article to view ### Article View - Read rendered markdown - See creation date - Click "Edit" to modify - Click "Delete" to remove ### Article Edit - Edit title and content - Live preview pane (desktop) - Save or cancel changes ### Theme Toggle - Click sun/moon icon in header - Switches between dark and light themes - Preference saved in browser ## Development ### Project Scripts ```bash # Install dependencies bun install # Development (backend) bun run dev:backend # Development (frontend) bun run dev:frontend # Build frontend bun run build # Production server bun run start # Type checking bun run typecheck ``` ### File Structure ```text article_manager/ ā”œā”€ā”€ src/ │ ā”œā”€ā”€ backend/ │ │ ā”œā”€ā”€ middleware/ │ │ │ └── auth.ts # Authentication middleware │ │ ā”œā”€ā”€ mcp/ │ │ │ └── server.ts # MCP server implementation │ │ ā”œā”€ā”€ routes/ │ │ │ └── api.ts # REST API routes │ │ ā”œā”€ā”€ services/ │ │ │ └── articles.ts # Article CRUD logic │ │ └── server.ts # Main server │ └── frontend/ │ ā”œā”€ā”€ components/ │ │ ā”œā”€ā”€ ArticleList.tsx # Article list component │ │ ā”œā”€ā”€ Header.tsx # Header with theme toggle │ │ └── Login.tsx # Login page │ ā”œā”€ā”€ pages/ │ │ ā”œā”€ā”€ ArticleEdit.tsx # Edit/create page │ │ ā”œā”€ā”€ ArticleView.tsx # Article view page │ │ └── Home.tsx # Home page │ ā”œā”€ā”€ styles/ │ │ └── main.css # All styles │ └── App.tsx # Main app component ā”œā”€ā”€ public/ # Built frontend (generated) │ ā”œā”€ā”€ manifest.json # PWA manifest │ ā”œā”€ā”€ sw.js # Service worker │ ā”œā”€ā”€ icon-192.png # PWA icon (192x192) │ ā”œā”€ā”€ icon-512.png # PWA icon (512x512) │ ā”œā”€ā”€ index.html # Main HTML (generated) │ ā”œā”€ā”€ App.[hash].js # Bundled JS (generated) │ └── App.[hash].css # Bundled CSS (generated) ā”œā”€ā”€ scripts/ │ ā”œā”€ā”€ build-html.cjs # Generate index.html │ ā”œā”€ā”€ generate-icons.cjs # Generate PWA icons │ └── watch-frontend.ts # Frontend dev watcher ā”œā”€ā”€ data/ # Article storage (gitignored) ā”œā”€ā”€ Dockerfile # Multi-stage Docker build ā”œā”€ā”€ docker-compose.yml # Docker Compose config ā”œā”€ā”€ package.json # Dependencies and scripts ā”œā”€ā”€ tsconfig.json # TypeScript config ā”œā”€ā”€ .env.example # Environment template ā”œā”€ā”€ .gitignore # Git ignore rules └── README.md # This file ``` ## Troubleshooting ### Port already in use ```bash # Find process using port 5000 lsof -i :5000 # Kill the process kill -9 <PID> ``` ### Permission denied on data directory ```bash # Fix permissions chmod -R 755 ./data ``` ### Docker build fails ```bash # Clean build cache docker builder prune -a # Rebuild without cache docker-compose build --no-cache ``` ### Frontend not loading ```bash # Rebuild frontend bun run build # Check if public/index.html exists ls -la public/ ``` ## Limitations - Single user only (no multi-tenancy) - Optimized for hundreds of articles (not thousands) - Simple partial text search (no full-text indexing) - Manual article creation (paste markdown) - No image uploads or media management - No tags, categories, or advanced metadata - File-based storage only (no database) - Bearer token auth only (no OAuth, sessions) - Single Docker container (not microservices) ## Security Considerations - Store AUTH_TOKEN securely (use environment variables) - Use HTTPS in production (reverse proxy recommended) - Regularly backup the data directory - Keep dependencies updated - Docker container runs as non-root user (UID 99, GID 100 - UNRAID compatible) for security - Request logging enabled for monitoring and audit trails ## License MIT License - feel free to use and modify as needed. ## Contributing This is a POC project. For production use, consider: - Adding database support for better scalability - Implementing full-text search (e.g., Elasticsearch) - Adding user management and roles - Implementing rate limiting - Adding comprehensive test coverage - Setting up CI/CD pipelines ## Support For issues and questions, please open an issue on the GitHub repository.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/joelmnz/mcp-markdown-manager'

If you have feedback or need assistance with the MCP directory API, please join our Discord server