Skip to main content
Glama

fact_check

Verify statements for accuracy using Jina AI's grounding engine to identify factual claims and provide supporting evidence.

Instructions

Fact-check a statement using Jina AI's grounding engine

Input Schema

NameRequiredDescriptionDefault
statementYes
deepdiveNo

Input Schema (JSON Schema)

{ "$schema": "http://json-schema.org/draft-07/schema#", "additionalProperties": false, "properties": { "deepdive": { "default": false, "type": "boolean" }, "statement": { "type": "string" } }, "required": [ "statement" ], "type": "object" }

Implementation Reference

  • index.ts:89-108 (handler)
    The groundStatement function executes the fact_check tool logic by querying Jina AI's grounding API with the provided statement and optional deepdive flag, parsing the response with GroundingResponseSchema.
    async function groundStatement(params: z.infer<typeof GroundingSchema>) { const headers: Record<string, string> = { 'Authorization': `Bearer ${JINA_API_KEY}`, 'Accept': 'application/json' }; const statementQuery = encodeURIComponent(params.statement); const url = `https://g.jina.ai/${statementQuery}${params.deepdive ? '?deepdive=true' : ''}`; const response = await fetch(url, { method: 'GET', headers, }); if (!response.ok) { throw new Error(`Jina AI Grounding API error: ${response.statusText}`); } return GroundingResponseSchema.parse(await response.json()); }
  • Zod schema defining the input parameters for the fact_check tool: a required 'statement' string and optional 'deepdive' boolean.
    export const GroundingSchema = z.object({ statement: z.string(), deepdive: z.boolean().optional().default(false) });
  • index.ts:123-127 (registration)
    Registers the fact_check tool in the ListTools response, specifying its name, description, and input schema.
    { name: "fact_check", description: "Fact-check a statement using Jina AI's grounding engine", inputSchema: zodToJsonSchema(GroundingSchema) }
  • Switch case in CallToolRequestSchema handler that parses arguments for fact_check, calls groundStatement, and formats the response as text content.
    case "fact_check": { const args = GroundingSchema.parse(request.params.arguments); const result = await groundStatement(args); return { content: [{ type: "text", text: JSON.stringify(result, null, 2) }] }; }
  • Evaluation function (fact_checkEval) for testing the fact_check tool using mcp-evals framework.
    const fact_checkEval: EvalFunction = { name: 'fact_check Tool Evaluation', description: 'Evaluates the correctness of the fact-checking tool', run: async () => { const result = await grade(openai("gpt-4o"), "Is it true that the Great Wall of China is visible from space?"); return JSON.parse(result); } };

Other Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/joeblockchain/mcp-jina-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server