Skip to main content
Glama

Stock Data MCP Server

Dockerfile945 B
# Railway MCP Server Dockerfile for Stock Data # Uses Python 3.11 slim image for optimal size and performance FROM python:3.11-slim # Set working directory WORKDIR /app # Set environment variables ENV PYTHONUNBUFFERED=1 \ PYTHONDONTWRITEBYTECODE=1 \ PIP_NO_CACHE_DIR=1 \ PIP_DISABLE_PIP_VERSION_CHECK=1 # Copy requirements first for better layer caching COPY requirements.txt . # Install Python dependencies RUN pip install --no-cache-dir -r requirements.txt # Copy application code COPY stock_mcp.py . # Expose port (Railway default) EXPOSE 8080 # Health check endpoint HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \ CMD python -c "import requests; requests.get('http://localhost:${PORT:-8000}')" || exit 1 # Run the MCP server with dynamic PORT # CRITICAL: Use shell form for CMD to allow ${PORT} variable expansion CMD python stock_mcp.py --transport sse --host 0.0.0.0 --port ${PORT:-8000}

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/joaovitor2763/mcptrial-stockfinder'

If you have feedback or need assistance with the MCP directory API, please join our Discord server