MCP Flux Studio

# MCP Flux Studio [![smithery badge](https://smithery.ai/badge/@jmanhype/mcp-flux-studio)](https://smithery.ai/server/@jmanhype/mcp-flux-studio) A powerful Model Context Protocol (MCP) server that brings Flux's advanced image generation capabilities to your AI coding assistants. This server enables direct integration of Flux's image generation, manipulation, and control features into Cursor and Windsurf (Codeium) IDEs. ## Overview MCP Flux Studio bridges the gap between AI coding assistants and Flux's powerful image generation API, allowing seamless integration of image generation capabilities directly into your development workflow. ### Features - **Image Generation** - Text-to-image generation with precise control - Multiple model support (flux.1.1-pro, flux.1-pro, flux.1-dev, flux.1.1-ultra) - Customizable aspect ratios and dimensions - **Image Manipulation** - Image-to-image transformation - Inpainting with customizable masks - Resolution upscaling and enhancement - **Advanced Controls** - Edge-based generation (canny) - Depth-aware generation - Pose-guided generation - **IDE Integration** - Full support for Cursor (v0.45.7+) - Compatible with Windsurf/Codeium Cascade (Wave 3+) - Seamless tool invocation through AI assistants ## Quick Start 1. **Prerequisites** - Node.js 18+ - Python 3.12+ - Flux API key - Compatible IDE (Cursor or Windsurf) 2. **Installation** ### Installing via Smithery To install Flux Studio for Claude Desktop automatically via [Smithery](https://smithery.ai/server/@jmanhype/mcp-flux-studio): ```bash npx -y @smithery/cli install @jmanhype/mcp-flux-studio --client claude ``` ### Manual Installation ```bash git clone https://github.com/jmanhype/mcp-flux-studio.git cd mcp-flux-studio npm install npm run build ``` 3. **Basic Configuration** ```env BFL_API_KEY=your_flux_api_key FLUX_PATH=/path/to/flux/installation ``` For detailed setup instructions, including IDE-specific configuration and troubleshooting, see our [Installation Guide](docs/INSTALLATION.md). ## Documentation - [Installation Guide](docs/INSTALLATION.md) - Comprehensive setup instructions - [API Documentation](docs/API.md) - Detailed tool documentation - [Example Usage](examples/tool-examples.md) - Real-world usage examples - [Contributing Guidelines](docs/CONTRIBUTING.md) - How to contribute ## IDE Integration ### Cursor (v0.45.7+) MCP Flux Studio integrates seamlessly with Cursor's AI assistant: 1. **Configuration** - Configure via Settings > Features > MCP - Supports both stdio and SSE connections - Environment variables can be set via wrapper scripts 2. **Usage** - Tools automatically available to Cursor's AI assistant - Tool invocations require user approval - Real-time feedback on generation progress ### Windsurf/Codeium (Wave 3+) Integration with Windsurf's Cascade AI: 1. **Configuration** - Edit `~/.codeium/windsurf/mcp_config.json` - Supports process-based tool execution - Environment variables configured in JSON 2. **Usage** - Access tools through Cascade's MCP toolbar - Automatic tool discovery and loading - Integrated with Cascade's AI capabilities For detailed IDE-specific setup instructions, see the [Installation Guide](docs/INSTALLATION.md). ## Usage The server provides the following tools: ### generate Generate an image from a text prompt. ```json { "prompt": "A photorealistic cat", "model": "flux.1.1-pro", "aspect_ratio": "1:1", "output": "generated.jpg" } ``` ### img2img Generate an image using another image as reference. ```json { "image": "input.jpg", "prompt": "Convert to oil painting", "model": "flux.1.1-pro", "strength": 0.85, "output": "output.jpg", "name": "oil_painting" } ``` ### inpaint Inpaint an image using a mask. ```json { "image": "input.jpg", "prompt": "Add flowers", "mask_shape": "circle", "position": "center", "output": "inpainted.jpg" } ``` ### control Generate an image using structural control. ```json { "type": "canny", "image": "control.jpg", "prompt": "A realistic photo", "output": "controlled.jpg" } ``` ## Development ### Project Structure ``` flux-mcp-server/ ├── src/ │ ├── index.ts # Main server implementation │ └── types.ts # TypeScript type definitions ├── tests/ │ └── server.test.ts # Server tests ├── docs/ │ ├── API.md # API documentation │ └── CONTRIBUTING.md # Contribution guidelines ├── examples/ │ ├── generate.json # Example tool usage │ └── config.json # Example configuration ├── package.json ├── tsconfig.json └── README.md ``` ### Running Tests ```bash npm test ``` ### Building ```bash npm run build ``` ## Contributing Please read [CONTRIBUTING.md](docs/CONTRIBUTING.md) for details on our code of conduct and the process for submitting pull requests. ## License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## Acknowledgments - [Model Context Protocol](https://github.com/modelcontextprotocol/mcp) - The protocol specification - [Flux API](https://flux.ai) - The underlying image generation API