Skip to main content
Glama
jezweb

Australian Postcodes MCP Server

mtrand.pyi22.7 kB
import builtins from collections.abc import Callable from typing import Any, Literal, overload import numpy as np from numpy import ( dtype, float64, int8, int16, int32, int64, int_, long, uint, uint8, uint16, uint32, uint64, ulong, ) from numpy._typing import ( ArrayLike, NDArray, _ArrayLikeFloat_co, _ArrayLikeInt_co, _DTypeLikeBool, _Int8Codes, _Int16Codes, _Int32Codes, _Int64Codes, _IntCodes, _LongCodes, _ShapeLike, _SupportsDType, _UInt8Codes, _UInt16Codes, _UInt32Codes, _UInt64Codes, _UIntCodes, _ULongCodes, ) from numpy.random.bit_generator import BitGenerator class RandomState: _bit_generator: BitGenerator def __init__(self, seed: _ArrayLikeInt_co | BitGenerator | None = ...) -> None: ... def __repr__(self) -> str: ... def __str__(self) -> str: ... def __getstate__(self) -> dict[str, Any]: ... def __setstate__(self, state: dict[str, Any]) -> None: ... def __reduce__(self) -> tuple[Callable[[BitGenerator], RandomState], tuple[BitGenerator], dict[str, Any]]: ... # noqa: E501 def seed(self, seed: _ArrayLikeFloat_co | None = ...) -> None: ... @overload def get_state(self, legacy: Literal[False] = ...) -> dict[str, Any]: ... @overload def get_state( self, legacy: Literal[True] = ... ) -> dict[str, Any] | tuple[str, NDArray[uint32], int, int, float]: ... def set_state( self, state: dict[str, Any] | tuple[str, NDArray[uint32], int, int, float] ) -> None: ... @overload def random_sample(self, size: None = ...) -> float: ... # type: ignore[misc] @overload def random_sample(self, size: _ShapeLike) -> NDArray[float64]: ... @overload def random(self, size: None = ...) -> float: ... # type: ignore[misc] @overload def random(self, size: _ShapeLike) -> NDArray[float64]: ... @overload def beta(self, a: float, b: float, size: None = ...) -> float: ... # type: ignore[misc] @overload def beta( self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: _ShapeLike | None = ... ) -> NDArray[float64]: ... @overload def exponential(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] @overload def exponential( self, scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ... ) -> NDArray[float64]: ... @overload def standard_exponential(self, size: None = ...) -> float: ... # type: ignore[misc] @overload def standard_exponential(self, size: _ShapeLike) -> NDArray[float64]: ... @overload def tomaxint(self, size: None = ...) -> int: ... # type: ignore[misc] @overload # Generates long values, but stores it in a 64bit int: def tomaxint(self, size: _ShapeLike) -> NDArray[int64]: ... @overload def randint( # type: ignore[misc] self, low: int, high: int | None = ..., size: None = ..., ) -> int: ... @overload def randint( # type: ignore[misc] self, low: int, high: int | None = ..., size: None = ..., dtype: type[bool] = ..., ) -> bool: ... @overload def randint( # type: ignore[misc] self, low: int, high: int | None = ..., size: None = ..., dtype: type[np.bool] = ..., ) -> np.bool: ... @overload def randint( # type: ignore[misc] self, low: int, high: int | None = ..., size: None = ..., dtype: type[int] = ..., ) -> int: ... @overload def randint( # type: ignore[misc] self, low: int, high: int | None = ..., size: None = ..., dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ..., # noqa: E501 ) -> uint8: ... @overload def randint( # type: ignore[misc] self, low: int, high: int | None = ..., size: None = ..., dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ..., # noqa: E501 ) -> uint16: ... @overload def randint( # type: ignore[misc] self, low: int, high: int | None = ..., size: None = ..., dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ..., # noqa: E501 ) -> uint32: ... @overload def randint( # type: ignore[misc] self, low: int, high: int | None = ..., size: None = ..., dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ..., # noqa: E501 ) -> uint: ... @overload def randint( # type: ignore[misc] self, low: int, high: int | None = ..., size: None = ..., dtype: dtype[ulong] | type[ulong] | _ULongCodes | _SupportsDType[dtype[ulong]] = ..., # noqa: E501 ) -> ulong: ... @overload def randint( # type: ignore[misc] self, low: int, high: int | None = ..., size: None = ..., dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ..., # noqa: E501 ) -> uint64: ... @overload def randint( # type: ignore[misc] self, low: int, high: int | None = ..., size: None = ..., dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ..., # noqa: E501 ) -> int8: ... @overload def randint( # type: ignore[misc] self, low: int, high: int | None = ..., size: None = ..., dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ..., # noqa: E501 ) -> int16: ... @overload def randint( # type: ignore[misc] self, low: int, high: int | None = ..., size: None = ..., dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ..., # noqa: E501 ) -> int32: ... @overload def randint( # type: ignore[misc] self, low: int, high: int | None = ..., size: None = ..., dtype: dtype[int_] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ..., # noqa: E501 ) -> int_: ... @overload def randint( # type: ignore[misc] self, low: int, high: int | None = ..., size: None = ..., dtype: dtype[long] | type[long] | _LongCodes | _SupportsDType[dtype[long]] = ..., # noqa: E501 ) -> long: ... @overload def randint( # type: ignore[misc] self, low: int, high: int | None = ..., size: None = ..., dtype: dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ..., # noqa: E501 ) -> int64: ... @overload def randint( # type: ignore[misc] self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = ..., size: _ShapeLike | None = ..., ) -> NDArray[long]: ... @overload def randint( # type: ignore[misc] self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = ..., size: _ShapeLike | None = ..., dtype: _DTypeLikeBool = ..., ) -> NDArray[np.bool]: ... @overload def randint( # type: ignore[misc] self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = ..., size: _ShapeLike | None = ..., dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ..., # noqa: E501 ) -> NDArray[int8]: ... @overload def randint( # type: ignore[misc] self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = ..., size: _ShapeLike | None = ..., dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ..., # noqa: E501 ) -> NDArray[int16]: ... @overload def randint( # type: ignore[misc] self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = ..., size: _ShapeLike | None = ..., dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ..., # noqa: E501 ) -> NDArray[int32]: ... @overload def randint( # type: ignore[misc] self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = ..., size: _ShapeLike | None = ..., dtype: dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] | None = ..., # noqa: E501 ) -> NDArray[int64]: ... @overload def randint( # type: ignore[misc] self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = ..., size: _ShapeLike | None = ..., dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ..., # noqa: E501 ) -> NDArray[uint8]: ... @overload def randint( # type: ignore[misc] self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = ..., size: _ShapeLike | None = ..., dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ..., # noqa: E501 ) -> NDArray[uint16]: ... @overload def randint( # type: ignore[misc] self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = ..., size: _ShapeLike | None = ..., dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ..., # noqa: E501 ) -> NDArray[uint32]: ... @overload def randint( # type: ignore[misc] self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = ..., size: _ShapeLike | None = ..., dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ..., # noqa: E501 ) -> NDArray[uint64]: ... @overload def randint( # type: ignore[misc] self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = ..., size: _ShapeLike | None = ..., dtype: dtype[long] | type[int] | type[long] | _LongCodes | _SupportsDType[dtype[long]] = ..., # noqa: E501 ) -> NDArray[long]: ... @overload def randint( # type: ignore[misc] self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = ..., size: _ShapeLike | None = ..., dtype: dtype[ulong] | type[ulong] | _ULongCodes | _SupportsDType[dtype[ulong]] = ..., # noqa: E501 ) -> NDArray[ulong]: ... def bytes(self, length: int) -> builtins.bytes: ... @overload def choice( self, a: int, size: None = ..., replace: bool = ..., p: _ArrayLikeFloat_co | None = ..., ) -> int: ... @overload def choice( self, a: int, size: _ShapeLike = ..., replace: bool = ..., p: _ArrayLikeFloat_co | None = ..., ) -> NDArray[long]: ... @overload def choice( self, a: ArrayLike, size: None = ..., replace: bool = ..., p: _ArrayLikeFloat_co | None = ..., ) -> Any: ... @overload def choice( self, a: ArrayLike, size: _ShapeLike = ..., replace: bool = ..., p: _ArrayLikeFloat_co | None = ..., ) -> NDArray[Any]: ... @overload def uniform( self, low: float = ..., high: float = ..., size: None = ... ) -> float: ... # type: ignore[misc] @overload def uniform( self, low: _ArrayLikeFloat_co = ..., high: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ..., ) -> NDArray[float64]: ... @overload def rand(self) -> float: ... @overload def rand(self, *args: int) -> NDArray[float64]: ... @overload def randn(self) -> float: ... @overload def randn(self, *args: int) -> NDArray[float64]: ... @overload def random_integers( self, low: int, high: int | None = ..., size: None = ... ) -> int: ... # type: ignore[misc] @overload def random_integers( self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = ..., size: _ShapeLike | None = ..., ) -> NDArray[long]: ... @overload def standard_normal(self, size: None = ...) -> float: ... # type: ignore[misc] @overload def standard_normal( # type: ignore[misc] self, size: _ShapeLike = ... ) -> NDArray[float64]: ... @overload def normal( self, loc: float = ..., scale: float = ..., size: None = ... ) -> float: ... # type: ignore[misc] @overload def normal( self, loc: _ArrayLikeFloat_co = ..., scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ..., ) -> NDArray[float64]: ... @overload def standard_gamma( # type: ignore[misc] self, shape: float, size: None = ..., ) -> float: ... @overload def standard_gamma( self, shape: _ArrayLikeFloat_co, size: _ShapeLike | None = ..., ) -> NDArray[float64]: ... @overload def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] @overload def gamma( self, shape: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ..., ) -> NDArray[float64]: ... @overload def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ... # type: ignore[misc] @overload def f( self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: _ShapeLike | None = ... ) -> NDArray[float64]: ... @overload def noncentral_f( self, dfnum: float, dfden: float, nonc: float, size: None = ... ) -> float: ... # type: ignore[misc] @overload def noncentral_f( self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: _ShapeLike | None = ..., ) -> NDArray[float64]: ... @overload def chisquare(self, df: float, size: None = ...) -> float: ... # type: ignore[misc] @overload def chisquare( self, df: _ArrayLikeFloat_co, size: _ShapeLike | None = ... ) -> NDArray[float64]: ... @overload def noncentral_chisquare( self, df: float, nonc: float, size: None = ... ) -> float: ... # type: ignore[misc] @overload def noncentral_chisquare( self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: _ShapeLike | None = ... ) -> NDArray[float64]: ... @overload def standard_t(self, df: float, size: None = ...) -> float: ... # type: ignore[misc] @overload def standard_t( self, df: _ArrayLikeFloat_co, size: None = ... ) -> NDArray[float64]: ... @overload def standard_t( self, df: _ArrayLikeFloat_co, size: _ShapeLike = ... ) -> NDArray[float64]: ... @overload def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ... # type: ignore[misc] @overload def vonmises( self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: _ShapeLike | None = ... ) -> NDArray[float64]: ... @overload def pareto(self, a: float, size: None = ...) -> float: ... # type: ignore[misc] @overload def pareto( self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ... ) -> NDArray[float64]: ... @overload def weibull(self, a: float, size: None = ...) -> float: ... # type: ignore[misc] @overload def weibull( self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ... ) -> NDArray[float64]: ... @overload def power(self, a: float, size: None = ...) -> float: ... # type: ignore[misc] @overload def power( self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ... ) -> NDArray[float64]: ... @overload def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc] @overload def standard_cauchy(self, size: _ShapeLike = ...) -> NDArray[float64]: ... @overload def laplace( self, loc: float = ..., scale: float = ..., size: None = ... ) -> float: ... # type: ignore[misc] @overload def laplace( self, loc: _ArrayLikeFloat_co = ..., scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ..., ) -> NDArray[float64]: ... @overload def gumbel( self, loc: float = ..., scale: float = ..., size: None = ... ) -> float: ... # type: ignore[misc] @overload def gumbel( self, loc: _ArrayLikeFloat_co = ..., scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ..., ) -> NDArray[float64]: ... @overload def logistic( self, loc: float = ..., scale: float = ..., size: None = ... ) -> float: ... # type: ignore[misc] @overload def logistic( self, loc: _ArrayLikeFloat_co = ..., scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ..., ) -> NDArray[float64]: ... @overload def lognormal( self, mean: float = ..., sigma: float = ..., size: None = ... ) -> float: ... # type: ignore[misc] @overload def lognormal( self, mean: _ArrayLikeFloat_co = ..., sigma: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ..., ) -> NDArray[float64]: ... @overload def rayleigh(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] @overload def rayleigh( self, scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ... ) -> NDArray[float64]: ... @overload def wald(self, mean: float, scale: float, size: None = ...) -> float: ... # type: ignore[misc] @overload def wald( self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: _ShapeLike | None = ... ) -> NDArray[float64]: ... @overload def triangular( self, left: float, mode: float, right: float, size: None = ... ) -> float: ... # type: ignore[misc] @overload def triangular( self, left: _ArrayLikeFloat_co, mode: _ArrayLikeFloat_co, right: _ArrayLikeFloat_co, size: _ShapeLike | None = ..., ) -> NDArray[float64]: ... @overload def binomial( self, n: int, p: float, size: None = ... ) -> int: ... # type: ignore[misc] @overload def binomial( self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ... ) -> NDArray[long]: ... @overload def negative_binomial( self, n: float, p: float, size: None = ... ) -> int: ... # type: ignore[misc] @overload def negative_binomial( self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ... ) -> NDArray[long]: ... @overload def poisson( self, lam: float = ..., size: None = ... ) -> int: ... # type: ignore[misc] @overload def poisson( self, lam: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ... ) -> NDArray[long]: ... @overload def zipf(self, a: float, size: None = ...) -> int: ... # type: ignore[misc] @overload def zipf( self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ... ) -> NDArray[long]: ... @overload def geometric(self, p: float, size: None = ...) -> int: ... # type: ignore[misc] @overload def geometric( self, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ... ) -> NDArray[long]: ... @overload def hypergeometric( self, ngood: int, nbad: int, nsample: int, size: None = ... ) -> int: ... # type: ignore[misc] @overload def hypergeometric( self, ngood: _ArrayLikeInt_co, nbad: _ArrayLikeInt_co, nsample: _ArrayLikeInt_co, size: _ShapeLike | None = ..., ) -> NDArray[long]: ... @overload def logseries(self, p: float, size: None = ...) -> int: ... # type: ignore[misc] @overload def logseries( self, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ... ) -> NDArray[long]: ... def multivariate_normal( self, mean: _ArrayLikeFloat_co, cov: _ArrayLikeFloat_co, size: _ShapeLike | None = ..., check_valid: Literal["warn", "raise", "ignore"] = ..., tol: float = ..., ) -> NDArray[float64]: ... def multinomial( self, n: _ArrayLikeInt_co, pvals: _ArrayLikeFloat_co, size: _ShapeLike | None = ... ) -> NDArray[long]: ... def dirichlet( self, alpha: _ArrayLikeFloat_co, size: _ShapeLike | None = ... ) -> NDArray[float64]: ... def shuffle(self, x: ArrayLike) -> None: ... @overload def permutation(self, x: int) -> NDArray[long]: ... @overload def permutation(self, x: ArrayLike) -> NDArray[Any]: ... _rand: RandomState beta = _rand.beta binomial = _rand.binomial bytes = _rand.bytes chisquare = _rand.chisquare choice = _rand.choice dirichlet = _rand.dirichlet exponential = _rand.exponential f = _rand.f gamma = _rand.gamma get_state = _rand.get_state geometric = _rand.geometric gumbel = _rand.gumbel hypergeometric = _rand.hypergeometric laplace = _rand.laplace logistic = _rand.logistic lognormal = _rand.lognormal logseries = _rand.logseries multinomial = _rand.multinomial multivariate_normal = _rand.multivariate_normal negative_binomial = _rand.negative_binomial noncentral_chisquare = _rand.noncentral_chisquare noncentral_f = _rand.noncentral_f normal = _rand.normal pareto = _rand.pareto permutation = _rand.permutation poisson = _rand.poisson power = _rand.power rand = _rand.rand randint = _rand.randint randn = _rand.randn random = _rand.random random_integers = _rand.random_integers random_sample = _rand.random_sample rayleigh = _rand.rayleigh seed = _rand.seed set_state = _rand.set_state shuffle = _rand.shuffle standard_cauchy = _rand.standard_cauchy standard_exponential = _rand.standard_exponential standard_gamma = _rand.standard_gamma standard_normal = _rand.standard_normal standard_t = _rand.standard_t triangular = _rand.triangular uniform = _rand.uniform vonmises = _rand.vonmises wald = _rand.wald weibull = _rand.weibull zipf = _rand.zipf # Two legacy that are trivial wrappers around random_sample sample = _rand.random_sample ranf = _rand.random_sample def set_bit_generator(bitgen: BitGenerator) -> None: ... def get_bit_generator() -> BitGenerator: ...

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jezweb/australian-postcodes-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server