Skip to main content
Glama
jezweb

Australian Postcodes MCP Server

chebyshev.pyi4.79 kB
from collections.abc import Callable, Iterable from typing import Any, Concatenate, Final, Self, TypeVar, overload from typing import Literal as L import numpy as np import numpy.typing as npt from numpy._typing import _IntLike_co from ._polybase import ABCPolyBase from ._polytypes import ( _Array1, _Array2, _CoefSeries, _FuncBinOp, _FuncCompanion, _FuncDer, _FuncFit, _FuncFromRoots, _FuncGauss, _FuncInteg, _FuncLine, _FuncPoly2Ortho, _FuncPow, _FuncPts, _FuncRoots, _FuncUnOp, _FuncVal, _FuncVal2D, _FuncVal3D, _FuncValFromRoots, _FuncVander, _FuncVander2D, _FuncVander3D, _FuncWeight, _Series, _SeriesLikeCoef_co, ) from .polyutils import trimcoef as chebtrim __all__ = [ "chebzero", "chebone", "chebx", "chebdomain", "chebline", "chebadd", "chebsub", "chebmulx", "chebmul", "chebdiv", "chebpow", "chebval", "chebder", "chebint", "cheb2poly", "poly2cheb", "chebfromroots", "chebvander", "chebfit", "chebtrim", "chebroots", "chebpts1", "chebpts2", "Chebyshev", "chebval2d", "chebval3d", "chebgrid2d", "chebgrid3d", "chebvander2d", "chebvander3d", "chebcompanion", "chebgauss", "chebweight", "chebinterpolate", ] _NumberOrObjectT = TypeVar("_NumberOrObjectT", bound=np.number | np.object_) def _cseries_to_zseries(c: npt.NDArray[_NumberOrObjectT]) -> _Series[_NumberOrObjectT]: ... def _zseries_to_cseries(zs: npt.NDArray[_NumberOrObjectT]) -> _Series[_NumberOrObjectT]: ... def _zseries_mul( z1: npt.NDArray[_NumberOrObjectT], z2: npt.NDArray[_NumberOrObjectT], ) -> _Series[_NumberOrObjectT]: ... def _zseries_div( z1: npt.NDArray[_NumberOrObjectT], z2: npt.NDArray[_NumberOrObjectT], ) -> _Series[_NumberOrObjectT]: ... def _zseries_der(zs: npt.NDArray[_NumberOrObjectT]) -> _Series[_NumberOrObjectT]: ... def _zseries_int(zs: npt.NDArray[_NumberOrObjectT]) -> _Series[_NumberOrObjectT]: ... poly2cheb: _FuncPoly2Ortho[L["poly2cheb"]] cheb2poly: _FuncUnOp[L["cheb2poly"]] chebdomain: Final[_Array2[np.float64]] chebzero: Final[_Array1[np.int_]] chebone: Final[_Array1[np.int_]] chebx: Final[_Array2[np.int_]] chebline: _FuncLine[L["chebline"]] chebfromroots: _FuncFromRoots[L["chebfromroots"]] chebadd: _FuncBinOp[L["chebadd"]] chebsub: _FuncBinOp[L["chebsub"]] chebmulx: _FuncUnOp[L["chebmulx"]] chebmul: _FuncBinOp[L["chebmul"]] chebdiv: _FuncBinOp[L["chebdiv"]] chebpow: _FuncPow[L["chebpow"]] chebder: _FuncDer[L["chebder"]] chebint: _FuncInteg[L["chebint"]] chebval: _FuncVal[L["chebval"]] chebval2d: _FuncVal2D[L["chebval2d"]] chebval3d: _FuncVal3D[L["chebval3d"]] chebvalfromroots: _FuncValFromRoots[L["chebvalfromroots"]] chebgrid2d: _FuncVal2D[L["chebgrid2d"]] chebgrid3d: _FuncVal3D[L["chebgrid3d"]] chebvander: _FuncVander[L["chebvander"]] chebvander2d: _FuncVander2D[L["chebvander2d"]] chebvander3d: _FuncVander3D[L["chebvander3d"]] chebfit: _FuncFit[L["chebfit"]] chebcompanion: _FuncCompanion[L["chebcompanion"]] chebroots: _FuncRoots[L["chebroots"]] chebgauss: _FuncGauss[L["chebgauss"]] chebweight: _FuncWeight[L["chebweight"]] chebpts1: _FuncPts[L["chebpts1"]] chebpts2: _FuncPts[L["chebpts2"]] # keep in sync with `Chebyshev.interpolate` _RT = TypeVar("_RT", bound=np.number | np.bool | np.object_) @overload def chebinterpolate( func: np.ufunc, deg: _IntLike_co, args: tuple[()] = ..., ) -> npt.NDArray[np.float64 | np.complex128 | np.object_]: ... @overload def chebinterpolate( func: Callable[[npt.NDArray[np.float64]], _RT], deg: _IntLike_co, args: tuple[()] = ..., ) -> npt.NDArray[_RT]: ... @overload def chebinterpolate( func: Callable[Concatenate[npt.NDArray[np.float64], ...], _RT], deg: _IntLike_co, args: Iterable[Any], ) -> npt.NDArray[_RT]: ... class Chebyshev(ABCPolyBase[L["T"]]): @overload @classmethod def interpolate( cls, func: Callable[[npt.NDArray[np.float64]], _CoefSeries], deg: _IntLike_co, domain: _SeriesLikeCoef_co | None = ..., args: tuple[()] = ..., ) -> Self: ... @overload @classmethod def interpolate( cls, func: Callable[ Concatenate[npt.NDArray[np.float64], ...], _CoefSeries, ], deg: _IntLike_co, domain: _SeriesLikeCoef_co | None = ..., *, args: Iterable[Any], ) -> Self: ... @overload @classmethod def interpolate( cls, func: Callable[ Concatenate[npt.NDArray[np.float64], ...], _CoefSeries, ], deg: _IntLike_co, domain: _SeriesLikeCoef_co | None, args: Iterable[Any], ) -> Self: ...

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jezweb/australian-postcodes-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server