Skip to main content
Glama
jezweb

Australian Postcodes MCP Server

matlib.pyi9.6 kB
from typing import Any, Literal, TypeAlias, TypeVar, overload import numpy as np import numpy.typing as npt from numpy import ( # noqa: F401 False_, ScalarType, True_, __array_namespace_info__, __version__, abs, absolute, acos, acosh, add, all, allclose, amax, amin, angle, any, append, apply_along_axis, apply_over_axes, arange, arccos, arccosh, arcsin, arcsinh, arctan, arctan2, arctanh, argmax, argmin, argpartition, argsort, argwhere, around, array, array2string, array_equal, array_equiv, array_repr, array_split, array_str, asanyarray, asarray, asarray_chkfinite, ascontiguousarray, asfortranarray, asin, asinh, asmatrix, astype, atan, atan2, atanh, atleast_1d, atleast_2d, atleast_3d, average, bartlett, base_repr, binary_repr, bincount, bitwise_and, bitwise_count, bitwise_invert, bitwise_left_shift, bitwise_not, bitwise_or, bitwise_right_shift, bitwise_xor, blackman, block, bmat, bool, bool_, broadcast, broadcast_arrays, broadcast_shapes, broadcast_to, busday_count, busday_offset, busdaycalendar, byte, bytes_, c_, can_cast, cbrt, cdouble, ceil, char, character, choose, clip, clongdouble, column_stack, common_type, complex64, complex128, complex256, complexfloating, compress, concat, concatenate, conj, conjugate, convolve, copy, copysign, copyto, core, corrcoef, correlate, cos, cosh, count_nonzero, cov, cross, csingle, ctypeslib, cumprod, cumsum, cumulative_prod, cumulative_sum, datetime64, datetime_as_string, datetime_data, deg2rad, degrees, delete, diag, diag_indices, diag_indices_from, diagflat, diagonal, diff, digitize, divide, divmod, dot, double, dsplit, dstack, dtype, dtypes, e, ediff1d, einsum, einsum_path, emath, empty_like, equal, errstate, euler_gamma, exceptions, exp, exp2, expand_dims, expm1, extract, f2py, fabs, fft, fill_diagonal, finfo, fix, flatiter, flatnonzero, flexible, flip, fliplr, flipud, float16, float32, float64, float128, float_power, floating, floor, floor_divide, fmax, fmin, fmod, format_float_positional, format_float_scientific, frexp, from_dlpack, frombuffer, fromfile, fromfunction, fromiter, frompyfunc, fromregex, fromstring, full, full_like, gcd, generic, genfromtxt, geomspace, get_include, get_printoptions, getbufsize, geterr, geterrcall, gradient, greater, greater_equal, half, hamming, hanning, heaviside, histogram, histogram2d, histogram_bin_edges, histogramdd, hsplit, hstack, hypot, i0, iinfo, imag, in1d, index_exp, indices, inexact, inf, info, inner, insert, int8, int16, int32, int64, int_, intc, integer, interp, intersect1d, intp, invert, is_busday, isclose, iscomplex, iscomplexobj, isdtype, isfinite, isfortran, isin, isinf, isnan, isnat, isneginf, isposinf, isreal, isrealobj, isscalar, issubdtype, iterable, ix_, kaiser, kron, lcm, ldexp, left_shift, less, less_equal, lexsort, lib, linalg, linspace, little_endian, load, loadtxt, log, log1p, log2, log10, logaddexp, logaddexp2, logical_and, logical_not, logical_or, logical_xor, logspace, long, longdouble, longlong, ma, mask_indices, matmul, matrix, matrix_transpose, matvec, max, maximum, may_share_memory, mean, median, memmap, meshgrid, mgrid, min, min_scalar_type, minimum, mintypecode, mod, modf, moveaxis, multiply, nan, nan_to_num, nanargmax, nanargmin, nancumprod, nancumsum, nanmax, nanmean, nanmedian, nanmin, nanpercentile, nanprod, nanquantile, nanstd, nansum, nanvar, ndarray, ndenumerate, ndim, ndindex, nditer, negative, nested_iters, newaxis, nextafter, nonzero, not_equal, number, object_, ogrid, ones_like, outer, packbits, pad, partition, percentile, permute_dims, pi, piecewise, place, poly, poly1d, polyadd, polyder, polydiv, polyfit, polyint, polymul, polynomial, polysub, polyval, positive, pow, power, printoptions, prod, promote_types, ptp, put, put_along_axis, putmask, quantile, r_, rad2deg, radians, random, ravel, ravel_multi_index, real, real_if_close, rec, recarray, reciprocal, record, remainder, repeat, require, reshape, resize, result_type, right_shift, rint, roll, rollaxis, roots, rot90, round, row_stack, s_, save, savetxt, savez, savez_compressed, sctypeDict, searchsorted, select, set_printoptions, setbufsize, setdiff1d, seterr, seterrcall, setxor1d, shape, shares_memory, short, show_config, show_runtime, sign, signbit, signedinteger, sin, sinc, single, sinh, size, sort, sort_complex, spacing, split, sqrt, square, squeeze, stack, std, str_, strings, subtract, sum, swapaxes, take, take_along_axis, tan, tanh, tensordot, test, testing, tile, timedelta64, trace, transpose, trapezoid, trapz, tri, tril, tril_indices, tril_indices_from, trim_zeros, triu, triu_indices, triu_indices_from, true_divide, trunc, typecodes, typename, typing, ubyte, ufunc, uint, uint8, uint16, uint32, uint64, uintc, uintp, ulong, ulonglong, union1d, unique, unique_all, unique_counts, unique_inverse, unique_values, unpackbits, unravel_index, unsignedinteger, unstack, unwrap, ushort, vander, var, vdot, vecdot, vecmat, vectorize, void, vsplit, vstack, where, zeros_like, ) from numpy._typing import _ArrayLike, _DTypeLike __all__ = ["rand", "randn", "repmat"] __all__ += np.__all__ ### _T = TypeVar("_T", bound=np.generic) _Matrix: TypeAlias = np.matrix[tuple[int, int], np.dtype[_T]] _Order: TypeAlias = Literal["C", "F"] ### # @overload def empty(shape: int | tuple[int, int], dtype: None = None, order: _Order = "C") -> _Matrix[np.float64]: ... @overload def empty(shape: int | tuple[int, int], dtype: _DTypeLike[_T], order: _Order = "C") -> _Matrix[_T]: ... @overload def empty(shape: int | tuple[int, int], dtype: npt.DTypeLike, order: _Order = "C") -> _Matrix[Any]: ... # @overload def ones(shape: int | tuple[int, int], dtype: None = None, order: _Order = "C") -> _Matrix[np.float64]: ... @overload def ones(shape: int | tuple[int, int], dtype: _DTypeLike[_T], order: _Order = "C") -> _Matrix[_T]: ... @overload def ones(shape: int | tuple[int, int], dtype: npt.DTypeLike, order: _Order = "C") -> _Matrix[Any]: ... # @overload def zeros(shape: int | tuple[int, int], dtype: None = None, order: _Order = "C") -> _Matrix[np.float64]: ... @overload def zeros(shape: int | tuple[int, int], dtype: _DTypeLike[_T], order: _Order = "C") -> _Matrix[_T]: ... @overload def zeros(shape: int | tuple[int, int], dtype: npt.DTypeLike, order: _Order = "C") -> _Matrix[Any]: ... # @overload def identity(n: int, dtype: None = None) -> _Matrix[np.float64]: ... @overload def identity(n: int, dtype: _DTypeLike[_T]) -> _Matrix[_T]: ... @overload def identity(n: int, dtype: npt.DTypeLike | None = None) -> _Matrix[Any]: ... # @overload def eye( n: int, M: int | None = None, k: int = 0, dtype: type[np.float64] | None = ..., order: _Order = "C", ) -> _Matrix[np.float64]: ... @overload def eye(n: int, M: int | None, k: int, dtype: _DTypeLike[_T], order: _Order = "C") -> _Matrix[_T]: ... @overload def eye(n: int, M: int | None = None, k: int = 0, *, dtype: _DTypeLike[_T], order: _Order = "C") -> _Matrix[_T]: ... @overload def eye(n: int, M: int | None = None, k: int = 0, dtype: npt.DTypeLike = ..., order: _Order = "C") -> _Matrix[Any]: ... # @overload def rand(arg: int | tuple[()] | tuple[int] | tuple[int, int], /) -> _Matrix[np.float64]: ... @overload def rand(arg: int, /, *args: int) -> _Matrix[np.float64]: ... # @overload def randn(arg: int | tuple[()] | tuple[int] | tuple[int, int], /) -> _Matrix[np.float64]: ... @overload def randn(arg: int, /, *args: int) -> _Matrix[np.float64]: ... # @overload def repmat(a: _Matrix[_T], m: int, n: int) -> _Matrix[_T]: ... @overload def repmat(a: _ArrayLike[_T], m: int, n: int) -> npt.NDArray[_T]: ... @overload def repmat(a: npt.ArrayLike, m: int, n: int) -> npt.NDArray[Any]: ...

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jezweb/australian-postcodes-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server