Skip to main content
Glama
jezweb

Australian Postcodes MCP Server

recipes.py37.1 kB
"""Imported from the recipes section of the itertools documentation. All functions taken from the recipes section of the itertools library docs [1]_. Some backward-compatible usability improvements have been made. .. [1] http://docs.python.org/library/itertools.html#recipes """ import random from collections import deque from contextlib import suppress from collections.abc import Sized from functools import lru_cache, partial from itertools import ( accumulate, chain, combinations, compress, count, cycle, groupby, islice, product, repeat, starmap, tee, zip_longest, ) from math import prod, comb, isqrt, gcd from operator import mul, not_, itemgetter, getitem from random import randrange, sample, choice from sys import hexversion __all__ = [ 'all_equal', 'batched', 'before_and_after', 'consume', 'convolve', 'dotproduct', 'first_true', 'factor', 'flatten', 'grouper', 'is_prime', 'iter_except', 'iter_index', 'loops', 'matmul', 'multinomial', 'ncycles', 'nth', 'nth_combination', 'padnone', 'pad_none', 'pairwise', 'partition', 'polynomial_eval', 'polynomial_from_roots', 'polynomial_derivative', 'powerset', 'prepend', 'quantify', 'reshape', 'random_combination_with_replacement', 'random_combination', 'random_permutation', 'random_product', 'repeatfunc', 'roundrobin', 'sieve', 'sliding_window', 'subslices', 'sum_of_squares', 'tabulate', 'tail', 'take', 'totient', 'transpose', 'triplewise', 'unique', 'unique_everseen', 'unique_justseen', ] _marker = object() # zip with strict is available for Python 3.10+ try: zip(strict=True) except TypeError: _zip_strict = zip else: _zip_strict = partial(zip, strict=True) # math.sumprod is available for Python 3.12+ try: from math import sumprod as _sumprod except ImportError: _sumprod = lambda x, y: dotproduct(x, y) def take(n, iterable): """Return first *n* items of the *iterable* as a list. >>> take(3, range(10)) [0, 1, 2] If there are fewer than *n* items in the iterable, all of them are returned. >>> take(10, range(3)) [0, 1, 2] """ return list(islice(iterable, n)) def tabulate(function, start=0): """Return an iterator over the results of ``func(start)``, ``func(start + 1)``, ``func(start + 2)``... *func* should be a function that accepts one integer argument. If *start* is not specified it defaults to 0. It will be incremented each time the iterator is advanced. >>> square = lambda x: x ** 2 >>> iterator = tabulate(square, -3) >>> take(4, iterator) [9, 4, 1, 0] """ return map(function, count(start)) def tail(n, iterable): """Return an iterator over the last *n* items of *iterable*. >>> t = tail(3, 'ABCDEFG') >>> list(t) ['E', 'F', 'G'] """ # If the given iterable has a length, then we can use islice to get its # final elements. Note that if the iterable is not actually Iterable, # either islice or deque will throw a TypeError. This is why we don't # check if it is Iterable. if isinstance(iterable, Sized): return islice(iterable, max(0, len(iterable) - n), None) else: return iter(deque(iterable, maxlen=n)) def consume(iterator, n=None): """Advance *iterable* by *n* steps. If *n* is ``None``, consume it entirely. Efficiently exhausts an iterator without returning values. Defaults to consuming the whole iterator, but an optional second argument may be provided to limit consumption. >>> i = (x for x in range(10)) >>> next(i) 0 >>> consume(i, 3) >>> next(i) 4 >>> consume(i) >>> next(i) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration If the iterator has fewer items remaining than the provided limit, the whole iterator will be consumed. >>> i = (x for x in range(3)) >>> consume(i, 5) >>> next(i) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration """ # Use functions that consume iterators at C speed. if n is None: # feed the entire iterator into a zero-length deque deque(iterator, maxlen=0) else: # advance to the empty slice starting at position n next(islice(iterator, n, n), None) def nth(iterable, n, default=None): """Returns the nth item or a default value. >>> l = range(10) >>> nth(l, 3) 3 >>> nth(l, 20, "zebra") 'zebra' """ return next(islice(iterable, n, None), default) def all_equal(iterable, key=None): """ Returns ``True`` if all the elements are equal to each other. >>> all_equal('aaaa') True >>> all_equal('aaab') False A function that accepts a single argument and returns a transformed version of each input item can be specified with *key*: >>> all_equal('AaaA', key=str.casefold) True >>> all_equal([1, 2, 3], key=lambda x: x < 10) True """ iterator = groupby(iterable, key) for first in iterator: for second in iterator: return False return True return True def quantify(iterable, pred=bool): """Return the how many times the predicate is true. >>> quantify([True, False, True]) 2 """ return sum(map(pred, iterable)) def pad_none(iterable): """Returns the sequence of elements and then returns ``None`` indefinitely. >>> take(5, pad_none(range(3))) [0, 1, 2, None, None] Useful for emulating the behavior of the built-in :func:`map` function. See also :func:`padded`. """ return chain(iterable, repeat(None)) padnone = pad_none def ncycles(iterable, n): """Returns the sequence elements *n* times >>> list(ncycles(["a", "b"], 3)) ['a', 'b', 'a', 'b', 'a', 'b'] """ return chain.from_iterable(repeat(tuple(iterable), n)) def dotproduct(vec1, vec2): """Returns the dot product of the two iterables. >>> dotproduct([10, 15, 12], [0.65, 0.80, 1.25]) 33.5 >>> 10 * 0.65 + 15 * 0.80 + 12 * 1.25 33.5 In Python 3.12 and later, use ``math.sumprod()`` instead. """ return sum(map(mul, vec1, vec2)) def flatten(listOfLists): """Return an iterator flattening one level of nesting in a list of lists. >>> list(flatten([[0, 1], [2, 3]])) [0, 1, 2, 3] See also :func:`collapse`, which can flatten multiple levels of nesting. """ return chain.from_iterable(listOfLists) def repeatfunc(func, times=None, *args): """Call *func* with *args* repeatedly, returning an iterable over the results. If *times* is specified, the iterable will terminate after that many repetitions: >>> from operator import add >>> times = 4 >>> args = 3, 5 >>> list(repeatfunc(add, times, *args)) [8, 8, 8, 8] If *times* is ``None`` the iterable will not terminate: >>> from random import randrange >>> times = None >>> args = 1, 11 >>> take(6, repeatfunc(randrange, times, *args)) # doctest:+SKIP [2, 4, 8, 1, 8, 4] """ if times is None: return starmap(func, repeat(args)) return starmap(func, repeat(args, times)) def _pairwise(iterable): """Returns an iterator of paired items, overlapping, from the original >>> take(4, pairwise(count())) [(0, 1), (1, 2), (2, 3), (3, 4)] On Python 3.10 and above, this is an alias for :func:`itertools.pairwise`. """ a, b = tee(iterable) next(b, None) return zip(a, b) try: from itertools import pairwise as itertools_pairwise except ImportError: pairwise = _pairwise else: def pairwise(iterable): return itertools_pairwise(iterable) pairwise.__doc__ = _pairwise.__doc__ class UnequalIterablesError(ValueError): def __init__(self, details=None): msg = 'Iterables have different lengths' if details is not None: msg += (': index 0 has length {}; index {} has length {}').format( *details ) super().__init__(msg) def _zip_equal_generator(iterables): for combo in zip_longest(*iterables, fillvalue=_marker): for val in combo: if val is _marker: raise UnequalIterablesError() yield combo def _zip_equal(*iterables): # Check whether the iterables are all the same size. try: first_size = len(iterables[0]) for i, it in enumerate(iterables[1:], 1): size = len(it) if size != first_size: raise UnequalIterablesError(details=(first_size, i, size)) # All sizes are equal, we can use the built-in zip. return zip(*iterables) # If any one of the iterables didn't have a length, start reading # them until one runs out. except TypeError: return _zip_equal_generator(iterables) def grouper(iterable, n, incomplete='fill', fillvalue=None): """Group elements from *iterable* into fixed-length groups of length *n*. >>> list(grouper('ABCDEF', 3)) [('A', 'B', 'C'), ('D', 'E', 'F')] The keyword arguments *incomplete* and *fillvalue* control what happens for iterables whose length is not a multiple of *n*. When *incomplete* is `'fill'`, the last group will contain instances of *fillvalue*. >>> list(grouper('ABCDEFG', 3, incomplete='fill', fillvalue='x')) [('A', 'B', 'C'), ('D', 'E', 'F'), ('G', 'x', 'x')] When *incomplete* is `'ignore'`, the last group will not be emitted. >>> list(grouper('ABCDEFG', 3, incomplete='ignore', fillvalue='x')) [('A', 'B', 'C'), ('D', 'E', 'F')] When *incomplete* is `'strict'`, a subclass of `ValueError` will be raised. >>> iterator = grouper('ABCDEFG', 3, incomplete='strict') >>> list(iterator) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... UnequalIterablesError """ iterators = [iter(iterable)] * n if incomplete == 'fill': return zip_longest(*iterators, fillvalue=fillvalue) if incomplete == 'strict': return _zip_equal(*iterators) if incomplete == 'ignore': return zip(*iterators) else: raise ValueError('Expected fill, strict, or ignore') def roundrobin(*iterables): """Visit input iterables in a cycle until each is exhausted. >>> list(roundrobin('ABC', 'D', 'EF')) ['A', 'D', 'E', 'B', 'F', 'C'] This function produces the same output as :func:`interleave_longest`, but may perform better for some inputs (in particular when the number of iterables is small). """ # Algorithm credited to George Sakkis iterators = map(iter, iterables) for num_active in range(len(iterables), 0, -1): iterators = cycle(islice(iterators, num_active)) yield from map(next, iterators) def partition(pred, iterable): """ Returns a 2-tuple of iterables derived from the input iterable. The first yields the items that have ``pred(item) == False``. The second yields the items that have ``pred(item) == True``. >>> is_odd = lambda x: x % 2 != 0 >>> iterable = range(10) >>> even_items, odd_items = partition(is_odd, iterable) >>> list(even_items), list(odd_items) ([0, 2, 4, 6, 8], [1, 3, 5, 7, 9]) If *pred* is None, :func:`bool` is used. >>> iterable = [0, 1, False, True, '', ' '] >>> false_items, true_items = partition(None, iterable) >>> list(false_items), list(true_items) ([0, False, ''], [1, True, ' ']) """ if pred is None: pred = bool t1, t2, p = tee(iterable, 3) p1, p2 = tee(map(pred, p)) return (compress(t1, map(not_, p1)), compress(t2, p2)) def powerset(iterable): """Yields all possible subsets of the iterable. >>> list(powerset([1, 2, 3])) [(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)] :func:`powerset` will operate on iterables that aren't :class:`set` instances, so repeated elements in the input will produce repeated elements in the output. >>> seq = [1, 1, 0] >>> list(powerset(seq)) [(), (1,), (1,), (0,), (1, 1), (1, 0), (1, 0), (1, 1, 0)] For a variant that efficiently yields actual :class:`set` instances, see :func:`powerset_of_sets`. """ s = list(iterable) return chain.from_iterable(combinations(s, r) for r in range(len(s) + 1)) def unique_everseen(iterable, key=None): """ Yield unique elements, preserving order. >>> list(unique_everseen('AAAABBBCCDAABBB')) ['A', 'B', 'C', 'D'] >>> list(unique_everseen('ABBCcAD', str.lower)) ['A', 'B', 'C', 'D'] Sequences with a mix of hashable and unhashable items can be used. The function will be slower (i.e., `O(n^2)`) for unhashable items. Remember that ``list`` objects are unhashable - you can use the *key* parameter to transform the list to a tuple (which is hashable) to avoid a slowdown. >>> iterable = ([1, 2], [2, 3], [1, 2]) >>> list(unique_everseen(iterable)) # Slow [[1, 2], [2, 3]] >>> list(unique_everseen(iterable, key=tuple)) # Faster [[1, 2], [2, 3]] Similarly, you may want to convert unhashable ``set`` objects with ``key=frozenset``. For ``dict`` objects, ``key=lambda x: frozenset(x.items())`` can be used. """ seenset = set() seenset_add = seenset.add seenlist = [] seenlist_add = seenlist.append use_key = key is not None for element in iterable: k = key(element) if use_key else element try: if k not in seenset: seenset_add(k) yield element except TypeError: if k not in seenlist: seenlist_add(k) yield element def unique_justseen(iterable, key=None): """Yields elements in order, ignoring serial duplicates >>> list(unique_justseen('AAAABBBCCDAABBB')) ['A', 'B', 'C', 'D', 'A', 'B'] >>> list(unique_justseen('ABBCcAD', str.lower)) ['A', 'B', 'C', 'A', 'D'] """ if key is None: return map(itemgetter(0), groupby(iterable)) return map(next, map(itemgetter(1), groupby(iterable, key))) def unique(iterable, key=None, reverse=False): """Yields unique elements in sorted order. >>> list(unique([[1, 2], [3, 4], [1, 2]])) [[1, 2], [3, 4]] *key* and *reverse* are passed to :func:`sorted`. >>> list(unique('ABBcCAD', str.casefold)) ['A', 'B', 'c', 'D'] >>> list(unique('ABBcCAD', str.casefold, reverse=True)) ['D', 'c', 'B', 'A'] The elements in *iterable* need not be hashable, but they must be comparable for sorting to work. """ sequenced = sorted(iterable, key=key, reverse=reverse) return unique_justseen(sequenced, key=key) def iter_except(func, exception, first=None): """Yields results from a function repeatedly until an exception is raised. Converts a call-until-exception interface to an iterator interface. Like ``iter(func, sentinel)``, but uses an exception instead of a sentinel to end the loop. >>> l = [0, 1, 2] >>> list(iter_except(l.pop, IndexError)) [2, 1, 0] Multiple exceptions can be specified as a stopping condition: >>> l = [1, 2, 3, '...', 4, 5, 6] >>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError))) [7, 6, 5] >>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError))) [4, 3, 2] >>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError))) [] """ with suppress(exception): if first is not None: yield first() while True: yield func() def first_true(iterable, default=None, pred=None): """ Returns the first true value in the iterable. If no true value is found, returns *default* If *pred* is not None, returns the first item for which ``pred(item) == True`` . >>> first_true(range(10)) 1 >>> first_true(range(10), pred=lambda x: x > 5) 6 >>> first_true(range(10), default='missing', pred=lambda x: x > 9) 'missing' """ return next(filter(pred, iterable), default) def random_product(*args, repeat=1): """Draw an item at random from each of the input iterables. >>> random_product('abc', range(4), 'XYZ') # doctest:+SKIP ('c', 3, 'Z') If *repeat* is provided as a keyword argument, that many items will be drawn from each iterable. >>> random_product('abcd', range(4), repeat=2) # doctest:+SKIP ('a', 2, 'd', 3) This equivalent to taking a random selection from ``itertools.product(*args, **kwarg)``. """ pools = [tuple(pool) for pool in args] * repeat return tuple(choice(pool) for pool in pools) def random_permutation(iterable, r=None): """Return a random *r* length permutation of the elements in *iterable*. If *r* is not specified or is ``None``, then *r* defaults to the length of *iterable*. >>> random_permutation(range(5)) # doctest:+SKIP (3, 4, 0, 1, 2) This equivalent to taking a random selection from ``itertools.permutations(iterable, r)``. """ pool = tuple(iterable) r = len(pool) if r is None else r return tuple(sample(pool, r)) def random_combination(iterable, r): """Return a random *r* length subsequence of the elements in *iterable*. >>> random_combination(range(5), 3) # doctest:+SKIP (2, 3, 4) This equivalent to taking a random selection from ``itertools.combinations(iterable, r)``. """ pool = tuple(iterable) n = len(pool) indices = sorted(sample(range(n), r)) return tuple(pool[i] for i in indices) def random_combination_with_replacement(iterable, r): """Return a random *r* length subsequence of elements in *iterable*, allowing individual elements to be repeated. >>> random_combination_with_replacement(range(3), 5) # doctest:+SKIP (0, 0, 1, 2, 2) This equivalent to taking a random selection from ``itertools.combinations_with_replacement(iterable, r)``. """ pool = tuple(iterable) n = len(pool) indices = sorted(randrange(n) for i in range(r)) return tuple(pool[i] for i in indices) def nth_combination(iterable, r, index): """Equivalent to ``list(combinations(iterable, r))[index]``. The subsequences of *iterable* that are of length *r* can be ordered lexicographically. :func:`nth_combination` computes the subsequence at sort position *index* directly, without computing the previous subsequences. >>> nth_combination(range(5), 3, 5) (0, 3, 4) ``ValueError`` will be raised If *r* is negative or greater than the length of *iterable*. ``IndexError`` will be raised if the given *index* is invalid. """ pool = tuple(iterable) n = len(pool) if (r < 0) or (r > n): raise ValueError c = 1 k = min(r, n - r) for i in range(1, k + 1): c = c * (n - k + i) // i if index < 0: index += c if (index < 0) or (index >= c): raise IndexError result = [] while r: c, n, r = c * r // n, n - 1, r - 1 while index >= c: index -= c c, n = c * (n - r) // n, n - 1 result.append(pool[-1 - n]) return tuple(result) def prepend(value, iterator): """Yield *value*, followed by the elements in *iterator*. >>> value = '0' >>> iterator = ['1', '2', '3'] >>> list(prepend(value, iterator)) ['0', '1', '2', '3'] To prepend multiple values, see :func:`itertools.chain` or :func:`value_chain`. """ return chain([value], iterator) def convolve(signal, kernel): """Discrete linear convolution of two iterables. Equivalent to polynomial multiplication. For example, multiplying ``(x² -x - 20)`` by ``(x - 3)`` gives ``(x³ -4x² -17x + 60)``. >>> list(convolve([1, -1, -20], [1, -3])) [1, -4, -17, 60] Examples of popular kinds of kernels: * The kernel ``[0.25, 0.25, 0.25, 0.25]`` computes a moving average. For image data, this blurs the image and reduces noise. * The kernel ``[1/2, 0, -1/2]`` estimates the first derivative of a function evaluated at evenly spaced inputs. * The kernel ``[1, -2, 1]`` estimates the second derivative of a function evaluated at evenly spaced inputs. Convolutions are mathematically commutative; however, the inputs are evaluated differently. The signal is consumed lazily and can be infinite. The kernel is fully consumed before the calculations begin. Supports all numeric types: int, float, complex, Decimal, Fraction. References: * Article: https://betterexplained.com/articles/intuitive-convolution/ * Video by 3Blue1Brown: https://www.youtube.com/watch?v=KuXjwB4LzSA """ # This implementation comes from an older version of the itertools # documentation. While the newer implementation is a bit clearer, # this one was kept because the inlined window logic is faster # and it avoids an unnecessary deque-to-tuple conversion. kernel = tuple(kernel)[::-1] n = len(kernel) window = deque([0], maxlen=n) * n for x in chain(signal, repeat(0, n - 1)): window.append(x) yield _sumprod(kernel, window) def before_and_after(predicate, it): """A variant of :func:`takewhile` that allows complete access to the remainder of the iterator. >>> it = iter('ABCdEfGhI') >>> all_upper, remainder = before_and_after(str.isupper, it) >>> ''.join(all_upper) 'ABC' >>> ''.join(remainder) # takewhile() would lose the 'd' 'dEfGhI' Note that the first iterator must be fully consumed before the second iterator can generate valid results. """ it = iter(it) transition = [] def true_iterator(): for elem in it: if predicate(elem): yield elem else: transition.append(elem) return # Note: this is different from itertools recipes to allow nesting # before_and_after remainders into before_and_after again. See tests # for an example. remainder_iterator = chain(transition, it) return true_iterator(), remainder_iterator def triplewise(iterable): """Return overlapping triplets from *iterable*. >>> list(triplewise('ABCDE')) [('A', 'B', 'C'), ('B', 'C', 'D'), ('C', 'D', 'E')] """ # This deviates from the itertools documentation reciple - see # https://github.com/more-itertools/more-itertools/issues/889 t1, t2, t3 = tee(iterable, 3) next(t3, None) next(t3, None) next(t2, None) return zip(t1, t2, t3) def _sliding_window_islice(iterable, n): # Fast path for small, non-zero values of n. iterators = tee(iterable, n) for i, iterator in enumerate(iterators): next(islice(iterator, i, i), None) return zip(*iterators) def _sliding_window_deque(iterable, n): # Normal path for other values of n. iterator = iter(iterable) window = deque(islice(iterator, n - 1), maxlen=n) for x in iterator: window.append(x) yield tuple(window) def sliding_window(iterable, n): """Return a sliding window of width *n* over *iterable*. >>> list(sliding_window(range(6), 4)) [(0, 1, 2, 3), (1, 2, 3, 4), (2, 3, 4, 5)] If *iterable* has fewer than *n* items, then nothing is yielded: >>> list(sliding_window(range(3), 4)) [] For a variant with more features, see :func:`windowed`. """ if n > 20: return _sliding_window_deque(iterable, n) elif n > 2: return _sliding_window_islice(iterable, n) elif n == 2: return pairwise(iterable) elif n == 1: return zip(iterable) else: raise ValueError(f'n should be at least one, not {n}') def subslices(iterable): """Return all contiguous non-empty subslices of *iterable*. >>> list(subslices('ABC')) [['A'], ['A', 'B'], ['A', 'B', 'C'], ['B'], ['B', 'C'], ['C']] This is similar to :func:`substrings`, but emits items in a different order. """ seq = list(iterable) slices = starmap(slice, combinations(range(len(seq) + 1), 2)) return map(getitem, repeat(seq), slices) def polynomial_from_roots(roots): """Compute a polynomial's coefficients from its roots. >>> roots = [5, -4, 3] # (x - 5) * (x + 4) * (x - 3) >>> polynomial_from_roots(roots) # x³ - 4 x² - 17 x + 60 [1, -4, -17, 60] Supports all numeric types: int, float, complex, Decimal, Fraction. """ # This recipe differs from the one in itertools docs in that it # applies list() after each call to convolve(). This avoids # hitting stack limits with nested generators. poly = [1] for root in roots: poly = list(convolve(poly, (1, -root))) return poly def iter_index(iterable, value, start=0, stop=None): """Yield the index of each place in *iterable* that *value* occurs, beginning with index *start* and ending before index *stop*. >>> list(iter_index('AABCADEAF', 'A')) [0, 1, 4, 7] >>> list(iter_index('AABCADEAF', 'A', 1)) # start index is inclusive [1, 4, 7] >>> list(iter_index('AABCADEAF', 'A', 1, 7)) # stop index is not inclusive [1, 4] The behavior for non-scalar *values* matches the built-in Python types. >>> list(iter_index('ABCDABCD', 'AB')) [0, 4] >>> list(iter_index([0, 1, 2, 3, 0, 1, 2, 3], [0, 1])) [] >>> list(iter_index([[0, 1], [2, 3], [0, 1], [2, 3]], [0, 1])) [0, 2] See :func:`locate` for a more general means of finding the indexes associated with particular values. """ seq_index = getattr(iterable, 'index', None) if seq_index is None: # Slow path for general iterables iterator = islice(iterable, start, stop) for i, element in enumerate(iterator, start): if element is value or element == value: yield i else: # Fast path for sequences stop = len(iterable) if stop is None else stop i = start - 1 with suppress(ValueError): while True: yield (i := seq_index(value, i + 1, stop)) def sieve(n): """Yield the primes less than n. >>> list(sieve(30)) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] """ # This implementation comes from an older version of the itertools # documentation. The newer implementation is easier to read but is # less lazy. if n > 2: yield 2 start = 3 data = bytearray((0, 1)) * (n // 2) for p in iter_index(data, 1, start, stop=isqrt(n) + 1): yield from iter_index(data, 1, start, p * p) data[p * p : n : p + p] = bytes(len(range(p * p, n, p + p))) start = p * p yield from iter_index(data, 1, start) def _batched(iterable, n, *, strict=False): """Batch data into tuples of length *n*. If the number of items in *iterable* is not divisible by *n*: * The last batch will be shorter if *strict* is ``False``. * :exc:`ValueError` will be raised if *strict* is ``True``. >>> list(batched('ABCDEFG', 3)) [('A', 'B', 'C'), ('D', 'E', 'F'), ('G',)] On Python 3.13 and above, this is an alias for :func:`itertools.batched`. """ if n < 1: raise ValueError('n must be at least one') iterator = iter(iterable) while batch := tuple(islice(iterator, n)): if strict and len(batch) != n: raise ValueError('batched(): incomplete batch') yield batch if hexversion >= 0x30D00A2: # pragma: no cover from itertools import batched as itertools_batched def batched(iterable, n, *, strict=False): return itertools_batched(iterable, n, strict=strict) else: batched = _batched batched.__doc__ = _batched.__doc__ def transpose(it): """Swap the rows and columns of the input matrix. >>> list(transpose([(1, 2, 3), (11, 22, 33)])) [(1, 11), (2, 22), (3, 33)] The caller should ensure that the dimensions of the input are compatible. If the input is empty, no output will be produced. """ return _zip_strict(*it) def reshape(matrix, cols): """Reshape the 2-D input *matrix* to have a column count given by *cols*. >>> matrix = [(0, 1), (2, 3), (4, 5)] >>> cols = 3 >>> list(reshape(matrix, cols)) [(0, 1, 2), (3, 4, 5)] """ return batched(chain.from_iterable(matrix), cols) def matmul(m1, m2): """Multiply two matrices. >>> list(matmul([(7, 5), (3, 5)], [(2, 5), (7, 9)])) [(49, 80), (41, 60)] The caller should ensure that the dimensions of the input matrices are compatible with each other. Supports all numeric types: int, float, complex, Decimal, Fraction. """ n = len(m2[0]) return batched(starmap(_sumprod, product(m1, transpose(m2))), n) def _factor_pollard(n): # Return a factor of n using Pollard's rho algorithm. # Efficient when n is odd and composite. for b in range(1, n): x = y = 2 d = 1 while d == 1: x = (x * x + b) % n y = (y * y + b) % n y = (y * y + b) % n d = gcd(x - y, n) if d != n: return d raise ValueError('prime or under 5') _primes_below_211 = tuple(sieve(211)) def factor(n): """Yield the prime factors of n. >>> list(factor(360)) [2, 2, 2, 3, 3, 5] Finds small factors with trial division. Larger factors are either verified as prime with ``is_prime`` or split into smaller factors with Pollard's rho algorithm. """ # Corner case reduction if n < 2: return # Trial division reduction for prime in _primes_below_211: while not n % prime: yield prime n //= prime # Pollard's rho reduction primes = [] todo = [n] if n > 1 else [] for n in todo: if n < 211**2 or is_prime(n): primes.append(n) else: fact = _factor_pollard(n) todo += (fact, n // fact) yield from sorted(primes) def polynomial_eval(coefficients, x): """Evaluate a polynomial at a specific value. Computes with better numeric stability than Horner's method. Evaluate ``x^3 - 4 * x^2 - 17 * x + 60`` at ``x = 2.5``: >>> coefficients = [1, -4, -17, 60] >>> x = 2.5 >>> polynomial_eval(coefficients, x) 8.125 Supports all numeric types: int, float, complex, Decimal, Fraction. """ n = len(coefficients) if n == 0: return type(x)(0) powers = map(pow, repeat(x), reversed(range(n))) return _sumprod(coefficients, powers) def sum_of_squares(it): """Return the sum of the squares of the input values. >>> sum_of_squares([10, 20, 30]) 1400 Supports all numeric types: int, float, complex, Decimal, Fraction. """ return _sumprod(*tee(it)) def polynomial_derivative(coefficients): """Compute the first derivative of a polynomial. Evaluate the derivative of ``x³ - 4 x² - 17 x + 60``: >>> coefficients = [1, -4, -17, 60] >>> derivative_coefficients = polynomial_derivative(coefficients) >>> derivative_coefficients [3, -8, -17] Supports all numeric types: int, float, complex, Decimal, Fraction. """ n = len(coefficients) powers = reversed(range(1, n)) return list(map(mul, coefficients, powers)) def totient(n): """Return the count of natural numbers up to *n* that are coprime with *n*. Euler's totient function φ(n) gives the number of totatives. Totative are integers k in the range 1 ≤ k ≤ n such that gcd(n, k) = 1. >>> n = 9 >>> totient(n) 6 >>> totatives = [x for x in range(1, n) if gcd(n, x) == 1] >>> totatives [1, 2, 4, 5, 7, 8] >>> len(totatives) 6 Reference: https://en.wikipedia.org/wiki/Euler%27s_totient_function """ for prime in set(factor(n)): n -= n // prime return n # Miller–Rabin primality test: https://oeis.org/A014233 _perfect_tests = [ (2047, (2,)), (9080191, (31, 73)), (4759123141, (2, 7, 61)), (1122004669633, (2, 13, 23, 1662803)), (2152302898747, (2, 3, 5, 7, 11)), (3474749660383, (2, 3, 5, 7, 11, 13)), (18446744073709551616, (2, 325, 9375, 28178, 450775, 9780504, 1795265022)), ( 3317044064679887385961981, (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41), ), ] @lru_cache def _shift_to_odd(n): 'Return s, d such that 2**s * d == n' s = ((n - 1) ^ n).bit_length() - 1 d = n >> s assert (1 << s) * d == n and d & 1 and s >= 0 return s, d def _strong_probable_prime(n, base): assert (n > 2) and (n & 1) and (2 <= base < n) s, d = _shift_to_odd(n - 1) x = pow(base, d, n) if x == 1 or x == n - 1: return True for _ in range(s - 1): x = x * x % n if x == n - 1: return True return False # Separate instance of Random() that doesn't share state # with the default user instance of Random(). _private_randrange = random.Random().randrange def is_prime(n): """Return ``True`` if *n* is prime and ``False`` otherwise. Basic examples: >>> is_prime(37) True >>> is_prime(3 * 13) False >>> is_prime(18_446_744_073_709_551_557) True Find the next prime over one billion: >>> next(filter(is_prime, count(10**9))) 1000000007 Generate random primes up to 200 bits and up to 60 decimal digits: >>> from random import seed, randrange, getrandbits >>> seed(18675309) >>> next(filter(is_prime, map(getrandbits, repeat(200)))) 893303929355758292373272075469392561129886005037663238028407 >>> next(filter(is_prime, map(randrange, repeat(10**60)))) 269638077304026462407872868003560484232362454342414618963649 This function is exact for values of *n* below 10**24. For larger inputs, the probabilistic Miller-Rabin primality test has a less than 1 in 2**128 chance of a false positive. """ if n < 17: return n in {2, 3, 5, 7, 11, 13} if not (n & 1 and n % 3 and n % 5 and n % 7 and n % 11 and n % 13): return False for limit, bases in _perfect_tests: if n < limit: break else: bases = (_private_randrange(2, n - 1) for i in range(64)) return all(_strong_probable_prime(n, base) for base in bases) def loops(n): """Returns an iterable with *n* elements for efficient looping. Like ``range(n)`` but doesn't create integers. >>> i = 0 >>> for _ in loops(5): ... i += 1 >>> i 5 """ return repeat(None, n) def multinomial(*counts): """Number of distinct arrangements of a multiset. The expression ``multinomial(3, 4, 2)`` has several equivalent interpretations: * In the expansion of ``(a + b + c)⁹``, the coefficient of the ``a³b⁴c²`` term is 1260. * There are 1260 distinct ways to arrange 9 balls consisting of 3 reds, 4 greens, and 2 blues. * There are 1260 unique ways to place 9 distinct objects into three bins with sizes 3, 4, and 2. The :func:`multinomial` function computes the length of :func:`distinct_permutations`. For example, there are 83,160 distinct anagrams of the word "abracadabra": >>> from more_itertools import distinct_permutations, ilen >>> ilen(distinct_permutations('abracadabra')) 83160 This can be computed directly from the letter counts, 5a 2b 2r 1c 1d: >>> from collections import Counter >>> list(Counter('abracadabra').values()) [5, 2, 2, 1, 1] >>> multinomial(5, 2, 1, 1, 2) 83160 A binomial coefficient is a special case of multinomial where there are only two categories. For example, the number of ways to arrange 12 balls with 5 reds and 7 blues is ``multinomial(5, 7)`` or ``math.comb(12, 5)``. When the multiplicities are all just 1, :func:`multinomial` is a special case of ``math.factorial`` so that ``multinomial(1, 1, 1, 1, 1, 1, 1) == math.factorial(7)``. Reference: https://en.wikipedia.org/wiki/Multinomial_theorem """ return prod(map(comb, accumulate(counts), counts))

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jezweb/australian-postcodes-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server