Skip to main content
Glama

Excel Finance MCP

ADVANCED_ANALYTICS.md17 kB
# 📊 Advanced Analytics Engine - Complete Guide **Professional-Grade Financial Modeling and Risk Analysis** The Excel Finance MCP Advanced Analytics Engine provides enterprise-level financial modeling capabilities that rival expensive consulting services and specialized software. Built on statistical best practices and professional standards. ## 🚀 **Overview** Transform your financial analysis with: - **Monte Carlo Risk Simulations** with 10,000+ iterations - **Professional Cash Flow Forecasting** (13/52-week rolling) - **DCF Valuation Models** with sensitivity analysis - **Executive Dashboards** with AI-powered insights - **Scenario Planning** with probability weighting - **Statistical Analysis** using industry-standard methodologies ## 🎯 **Monte Carlo Risk Analysis** ### **What It Does** Performs sophisticated risk analysis using statistical simulations to model uncertainty in financial outcomes. Instead of single-point estimates, generates probability distributions of possible results. ### **Professional Applications** - **Investment Risk Assessment**: Analyze potential returns and downside risk - **Cash Flow Risk Modeling**: Understand cash flow volatility and runway scenarios - **Budget Variance Analysis**: Model potential deviations from budget assumptions - **Strategic Planning**: Evaluate multiple outcome scenarios with probabilities - **Regulatory Capital**: Risk metrics for financial institutions (VaR, Expected Shortfall) ### **Key Features** #### **Multiple Distribution Support** - **Normal Distribution**: Standard bell curve for many financial variables - **Triangular Distribution**: When you know min, most likely, and max values - **Uniform Distribution**: Equal probability across a range - **Lognormal Distribution**: For variables that can't be negative (asset prices, revenues) - **Beta Distribution**: For percentages and rates bounded between 0 and 1 #### **Professional Risk Metrics** - **Value at Risk (VaR)**: Maximum expected loss at 95%/99% confidence levels - **Expected Shortfall**: Average loss beyond VaR threshold - **Downside Deviation**: Volatility below the mean (downside risk only) - **Coefficient of Variation**: Risk per unit of return - **Confidence Intervals**: 90%, 95%, and 99% confidence bounds ### **Usage Example** ```typescript // Investment decision with uncertain revenue and costs analytics_monte_carlo_simulation({ scenarioName: "New Product Launch Analysis", description: "ROI analysis for new product with market uncertainty", formula: "(revenue - variable_costs - fixed_costs) / initial_investment", iterations: 10000, variables: [ { name: "revenue", distributionType: "triangular", parameters: { min: 800000, // Pessimistic case mode: 1200000, // Most likely case max: 2000000 // Optimistic case } }, { name: "variable_costs", distributionType: "normal", parameters: { mean: 400000, stdDev: 50000 } }, { name: "fixed_costs", distributionType: "uniform", parameters: { min: 200000, max: 250000 } }, { name: "initial_investment", distributionType: "normal", parameters: { mean: 500000, stdDev: 25000 } } ] }) ``` ### **Output Analysis** The simulation generates comprehensive analysis including: - **Statistical Summary**: Mean, median, standard deviation, min/max - **Risk Metrics**: VaR (95%), Expected Shortfall, downside risk measures - **Probability Analysis**: Probability of loss, break-even probability - **Confidence Intervals**: 90%, 95%, 99% confidence bounds - **Frequency Distribution**: Histogram showing outcome probabilities - **Professional Documentation**: Methodology, assumptions, limitations ## 🔄 **Scenario Comparison Analysis** ### **Multi-Scenario Modeling** Compare multiple scenarios with probability weighting to make informed decisions. ```typescript analytics_scenario_comparison({ scenarios: [ { name: "Conservative Case", probability: 0.4, // 40% chance formula: "revenue * 0.15 - costs", variables: [ { name: "revenue", distributionType: "normal", parameters: { mean: 1000000, stdDev: 100000 } } ] }, { name: "Base Case", probability: 0.4, // 40% chance formula: "revenue * 0.20 - costs", variables: [ { name: "revenue", distributionType: "normal", parameters: { mean: 1500000, stdDev: 150000 } } ] }, { name: "Optimistic Case", probability: 0.2, // 20% chance formula: "revenue * 0.25 - costs", variables: [ { name: "revenue", distributionType: "normal", parameters: { mean: 2000000, stdDev: 200000 } } ] } ] }) ``` ### **Probability-Weighted Results** - **Expected Outcome**: Weighted average of all scenarios - **Combined Risk**: Portfolio-style risk calculation - **Decision Matrix**: Recommendations based on risk/return profile - **Scenario Analysis**: Individual scenario results and comparisons ## 📈 **Cash Flow Forecasting** ### **13-Week Rolling Forecasts** Executive-level cash management with weekly granularity. #### **Professional Features** - **Weekly Granularity**: Day-by-day cash flow visibility - **Confidence Intervals**: Statistical upper/lower bounds - **Burn Rate Analysis**: Cash consumption tracking - **Runway Calculations**: Time until cash depletion - **Risk Assessment**: Probability of cash shortfall - **Key Metrics**: Break-even timing, minimum cash dates #### **Driver-Based Modeling** ```typescript analytics_13_week_forecast({ categories: [ { name: "Revenue", isInflow: true, subcategories: [ { category: "Subscription Revenue", historical: [45000, 47000, 46000, 48000, 49000, 51000], // Last 6 weeks growthRate: 0.05, // 5% annual growth seasonalityPattern: [1.0, 1.0, 0.9, 0.9, 1.1, 1.1], // Weekly pattern volatility: 0.10 // 10% standard deviation } ] }, { name: "Operating Expenses", isInflow: false, subcategories: [ { category: "Payroll", historical: [85000, 85000, 85000, 87000, 87000, 87000], growthRate: 0.03, volatility: 0.02 }, { category: "Marketing", historical: [15000, 18000, 12000, 20000, 16000, 14000], growthRate: 0.10, driver: "revenue_growth", // Tied to revenue performance driverMultiplier: 0.15 // 15% of revenue growth } ] } ], drivers: [ { name: "revenue_growth", values: [1.02, 1.03, 1.02, 1.04, 1.03, 1.05, 1.04, 1.06, 1.05, 1.07, 1.06, 1.08, 1.07], // 13 weeks description: "Weekly revenue growth multiplier" } ] }) ``` ### **52-Week Strategic Forecasts** Long-term planning with advanced trend modeling. #### **Advanced Capabilities** - **Seasonal Adjustments**: Full-year seasonal patterns - **Trend Analysis**: Statistical trend identification and projection - **Uncertainty Modeling**: Increased volatility for longer forecasts - **Quarterly Aggregation**: Executive summary by quarters - **Scenario Analysis**: Multiple outcome pathways ## 💰 **DCF Valuation Models** ### **Professional Valuation Framework** Complete discounted cash flow models following industry standards. #### **Model Components** - **Revenue Projections**: Multi-year revenue forecasting with growth rates - **Margin Analysis**: Operating margin progression to terminal levels - **Capital Expenditures**: Capex modeling with depreciation - **Working Capital**: Working capital change analysis - **Terminal Value**: Gordon growth model for perpetual value - **WACC Calculation**: Weighted average cost of capital - **Sensitivity Analysis**: 2-way sensitivity tables ```typescript analytics_dcf_valuation({ projectionYears: 5, discountRate: 0.12, // 12% WACC terminalGrowthRate: 0.025, // 2.5% long-term growth initialRevenue: 10000000, // $10M base revenue revenueCAGR: 0.15, // 15% revenue growth terminalMargin: 0.20, // 20% terminal operating margin terminalCapexRate: 0.03, // 3% of revenue capex in terminal terminalTaxRate: 0.25 // 25% tax rate }) ``` ### **Professional Output** - **Financial Projections**: 5-year detailed financial model - **Free Cash Flow**: Annual FCF calculations with formulas - **Present Value Analysis**: DCF calculations by year - **Enterprise Valuation**: Total company valuation - **Valuation Multiples**: EV/Revenue, EV/EBITDA implied multiples - **Sensitivity Analysis**: Tornado charts and sensitivity tables - **Professional Documentation**: Methodology, assumptions, references ## 🎯 **Executive Dashboards** ### **AI-Powered Insights Engine** #### **Automated Analysis** The dashboard automatically analyzes your data and generates insights: - **Cash Runway Alerts**: Warnings when runway drops below thresholds - **Revenue Performance**: Variance analysis with automated explanations - **Working Capital Efficiency**: Optimization opportunity identification - **Risk Assessment**: High-risk areas requiring management attention - **Performance Trends**: Statistical trend analysis and forecasting #### **Executive-Ready Reporting** ```typescript analytics_executive_dashboard({ reportDate: "2024-12-01", kpis: [ { name: "Monthly Recurring Revenue", current: 850000, target: 1000000, previous: 820000, unit: "USD", category: "financial", frequency: "monthly", threshold: { excellent: 950000, good: 900000, warning: 800000, critical: 700000 }, trend: "increasing", importance: "high" }, { name: "Customer Acquisition Cost", current: 245, target: 200, previous: 260, unit: "USD", category: "operational", frequency: "monthly", threshold: { excellent: 180, good: 200, warning: 250, critical: 300 }, trend: "decreasing", importance: "high" } ], risks: [ { name: "Cash Flow Concentration Risk", score: 75, level: "high", category: "liquidity", mitigation: "Diversify customer base and payment terms", trend: "deteriorating", impact: 500000 } ], cashFlow: { current: 2500000, projected13Week: 400000, projected52Week: 1800000, burnRate: 180000, runwayMonths: 13.9 }, financial: { revenue: { current: 12000000, target: 15000000, variance: -20 }, ebitda: { current: 2400000, target: 3000000, margin: 20 }, workingCapital: { current: 800000, target: 600000, days: 45 }, debtToEquity: { current: 0.65, target: 0.50, trend: "increasing" } } }) ``` ### **Dashboard Components** #### **Executive Summary** - **Overall Business Health Score**: 0-100 composite score - **Key Alerts**: Critical items requiring immediate attention - **Performance Highlights**: Top achievements and concerning trends - **Strategic Recommendations**: AI-generated action items #### **Financial Snapshot** - **Revenue Performance**: Actual vs. target with variance analysis - **Profitability Metrics**: EBITDA, margins, efficiency ratios - **Cash Position**: Current cash, runway, burn rate analysis - **Capital Structure**: Debt ratios, liquidity metrics #### **Risk Dashboard** - **Risk Scoring**: 0-100 risk scores by category - **Risk Trends**: Improving, stable, or deteriorating - **Mitigation Status**: Action plan progress tracking - **Financial Impact**: Quantified risk exposure #### **Strategic Insights** - **Automated Recommendations**: AI-generated action items - **Priority Scoring**: High/medium/low priority classification - **Impact Estimates**: Financial impact quantification - **Timeframe Guidance**: Implementation timeline recommendations ## 🔍 **Sensitivity Analysis** ### **Variable Impact Assessment** Understand how changes in key variables affect outcomes. ```typescript analytics_sensitivity_analysis({ scenarioName: "Product Launch Sensitivity", formula: "(revenue - costs) / investment", variables: [ { name: "revenue", distributionType: "normal", parameters: { mean: 1000000, stdDev: 100000 } }, { name: "costs", distributionType: "triangular", parameters: { min: 600000, mode: 700000, max: 800000 } }, { name: "investment", distributionType: "uniform", parameters: { min: 400000, max: 500000 } } ], sensitivityRange: 0.25 // ±25% sensitivity range }) ``` ### **Analysis Output** - **Tornado Charts**: Variables ranked by impact on outcome - **Sensitivity Tables**: Systematic variable change analysis - **Break-Even Analysis**: Critical threshold identification - **Elasticity Measures**: Percentage change sensitivity - **Risk Rankings**: Variables contributing most to uncertainty ## 📊 **Professional Standards & Methodology** ### **Statistical Best Practices** - **Monte Carlo Methods**: Based on Metropolis-Hastings algorithms - **Sample Size Optimization**: Statistical power and confidence calculations - **Distribution Fitting**: Professional distribution selection criteria - **Convergence Testing**: Ensuring simulation stability and accuracy ### **Financial Modeling Standards** - **CFA Institute Guidelines**: Valuation and risk management best practices - **AICPA Standards**: Professional valuation methodology - **Basel III Framework**: Risk measurement and capital requirements - **COSO Framework**: Risk management and internal control principles ### **Quality Assurance** - **Model Validation**: Backtesting and validation procedures - **Sensitivity Testing**: Robustness checks and stress testing - **Documentation Standards**: Complete methodology documentation - **Audit Trail**: Full traceability of calculations and assumptions ## 🎯 **Use Cases by Role** ### **For CFOs** - **Strategic Planning**: Multi-scenario business planning with risk assessment - **Board Reporting**: Executive dashboards with automated insights - **Capital Allocation**: DCF valuations for investment decisions - **Risk Management**: Enterprise-wide risk assessment and monitoring ### **For Senior Accountants** - **Budget Planning**: Monte Carlo budget variance analysis - **Cash Management**: 13-week rolling forecasts for operational planning - **Financial Modeling**: Professional DCF models for valuations - **Variance Analysis**: Automated actual vs. budget analysis ### **For Comptrollers** - **Internal Reporting**: KPI dashboards and performance tracking - **Risk Assessment**: Statistical risk analysis and scenario planning - **Process Improvement**: Sensitivity analysis for process optimization - **Management Reporting**: Executive-level financial analysis ### **For Financial Analysts** - **Investment Analysis**: Complete DCF modeling with sensitivity analysis - **Risk Modeling**: Monte Carlo simulations for investment decisions - **Forecasting**: Advanced cash flow and revenue forecasting - **Scenario Planning**: Multi-scenario analysis with probability weighting ## 🚀 **Getting Started** ### **Basic Monte Carlo Simulation** 1. Define your outcome formula (e.g., "revenue - costs") 2. Identify uncertain variables (revenue, costs) 3. Choose appropriate distributions for each variable 4. Run simulation with recommended 10,000 iterations 5. Analyze results: statistics, risk metrics, probability distributions ### **Cash Flow Forecasting** 1. Organize historical data by category (revenue, expenses) 2. Identify growth trends and seasonal patterns 3. Define any driver relationships (marketing spend → revenue) 4. Run 13-week forecast for operational planning 5. Use 52-week forecast for strategic planning ### **DCF Valuation** 1. Gather base financial data (revenue, margins, growth rates) 2. Estimate cost of capital (WACC) and terminal growth rate 3. Run DCF analysis with 5-year projections 4. Review sensitivity analysis for key value drivers 5. Compare results to market multiples and benchmarks ## 📚 **Professional References** - **Financial Modeling**: Damodaran on Valuation, McKinsey Valuation - **Risk Management**: Hull Options, Futures & Derivatives - **Monte Carlo Methods**: Glasserman Monte Carlo Methods in Financial Engineering - **Cash Flow Forecasting**: Koller, Goedhart, Wessels Valuation - **Statistical Analysis**: Bodie, Kane, Marcus Investments --- **The Advanced Analytics Engine transforms Excel into a professional-grade financial modeling platform, providing capabilities that rival expensive enterprise software and consulting services at a fraction of the cost.**

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jeremycharlesgillespie/excel-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server