# Iris MCP: Cross-Project AI Agent Communication System
**A Revolutionary Model Context Protocol Server for Inter-Codebase Claude Code Collaboration**
---
## ๐ฏ Executive Summary
Iris MCP is a groundbreaking MCP server that enables **direct communication between Claude Code instances across different project directories**. It allows Claude working in Project A to seamlessly coordinate with Claude in Project B through bidirectional stdio streaming, creating the first true cross-codebase AI collaboration system.
**The Core Innovation:** Instead of switching contexts manually, you stay in Project A's Claude Code session and say:
> *"Using iris MCP, ask Team Backend what their API versioning strategy is"*
Claude A sends the question via Iris MCP โ Iris MCP launches Claude B in the backend directory โ Claude B analyzes their codebase and responds โ Iris MCP relays the answer back โ Claude A incorporates it into your conversation.
**This has never been done before.**
---
## ๐ The Vision
### The Problem
Modern software development involves multiple codebases (frontend, backend, mobile, infrastructure) that must stay synchronized. When you make a breaking change in one project, you need to:
1. **Context Switch**: Stop work, navigate to other project
2. **Launch New Claude**: Start fresh Claude Code session
3. **Explain Context**: Re-explain what changed and why
4. **Copy/Paste**: Manually transfer information between projects
5. **Repeat**: Do this for every affected project
This workflow is **slow, error-prone, and breaks your flow state**.
### The Solution: Iris MCP
**Single Command Coordination:**
```
You (in Project A): "I'm changing the User model to add 'lastLoginDate'.
Using iris MCP, coordinate with Team Frontend and Team Backend to update their code."
Claude A:
โ Calls teams.send_message("frontend", "User model adding lastLoginDate field...")
โ Calls teams.send_message("backend", "User model adding lastLoginDate field...")
Iris MCP:
โ Launches Claude Code in /projects/team-frontend via stdio streaming
โ Launches Claude Code in /projects/team-backend via stdio streaming
โ Waits for responses from both teams
โ Relays responses back to Claude A
Claude B (Frontend): "Updated TypeScript interfaces in user.types.ts"
Claude C (Backend): "Added migration and updated user schema"
Claude A: "All teams coordinated. Frontend and Backend have been updated."
```
**You never left Project A. You never switched context. The coordination happened automatically.**
---
## ๐๏ธ Technical Architecture
### Core Components
```
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Iris MCP Server โ
โ (Message Broker & Orchestrator) โ
โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ MCP Tools: โ โ
โ โ โข teams.send_message(team_name, message, wait_for_reply) โ โ
โ โ โข teams.ask(team_name, question) โ โ
โ โ โข teams.notify(team_name, message) โ โ
โ โ โข teams.get_status(team_name) โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ Team Registry: โ โ
โ โ { โ โ
โ โ "frontend": "/projects/acme-frontend", โ โ
โ โ "backend": "/projects/acme-backend", โ โ
โ โ "mobile": "/projects/acme-mobile" โ โ
โ โ } โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ Stdio Process Manager: โ โ
โ โ โข Spawns: claude --input-format stream-json โ โ
โ โ --output-format stream-json โ โ
โ โ โข Pipes messages via stdin โ โ
โ โ โข Captures responses from stdout โ โ
โ โ โข Terminates when complete โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ โ โ
โโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโ
โ Team Frontend โ โ Team Backend โ โ Team Mobile โ
โ โ โ โ โ โ
โ Claude Code โ โ Claude Code โ โ Claude Code โ
โ (stdio stream) โ โ (stdio stream) โ โ (stdio stream) โ
โ โ โ โ โ โ
โ โข Local context โ โ โข Local context โ โ โข Local context โ
โ โข .claude/ โ โ โข .claude/ โ โ โข .claude/ โ
โ โข MCP servers โ โ โข MCP servers โ โ โข MCP servers โ
โ โข Project files โ โ โข Project files โ โ โข Project files โ
โโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโ
```
### Message Flow Sequence
```mermaid
sequenceDiagram
participant User
participant ClaudeA as Claude A (Frontend)
participant IrisMCP as Iris MCP Server
participant ClaudeB as Claude B (Backend)
User->>ClaudeA: Ask Team Backend about API strategy
ClaudeA->>IrisMCP: teams.ask("backend", "What's your API versioning strategy?")
IrisMCP->>IrisMCP: Spawn: claude --input-format stream-json
IrisMCP->>ClaudeB: {"type":"user","message":"What's your API versioning strategy?"}
ClaudeB->>ClaudeB: Analyzes backend codebase
ClaudeB->>IrisMCP: {"type":"result","response":"We use semantic versioning..."}
IrisMCP->>IrisMCP: Terminate Claude B process
IrisMCP->>ClaudeA: Return: "Team Backend says: We use semantic versioning..."
ClaudeA->>User: "I asked Team Backend and they use semantic versioning..."
```
### Stdio Streaming Protocol
Claude Code supports bidirectional streaming via NDJSON (newline-delimited JSON):
**Input Format (`--input-format stream-json`):**
```json
{"type":"user","message":{"role":"user","content":"Your message here"},"session_id":"team-backend-session"}
{"type":"user","message":{"role":"user","content":"Follow-up question"},"session_id":"team-backend-session"}
```
**Output Format (`--output-format stream-json`):**
```json
{"type":"init","session_id":"abc123"}
{"type":"message","role":"assistant","content":"I'll help with that..."}
{"type":"tool_use","name":"Read","input":{"path":"api/schema.ts"}}
{"type":"result","response":"Here's the final answer...","status":"completed"}
```
**Key Command:**
```bash
cd /projects/team-backend
claude --input-format stream-json --output-format stream-json
```
---
## ๐ Comparison to Existing Solutions
### Existing Multi-Agent Systems
| Project | Description | Limitations |
|---------|-------------|-------------|
| **[Symphony of One MCP](https://github.com/ai-wes/symphony-of-one-mcp)** | Multiple Claude instances collaborating through centralized hub | โ Single shared workspace only<br>โ Chat room based, not direct messaging<br>โ Uses Socket.IO, not stdio streaming |
| **[Claude-Flow](https://github.com/ruvnet/claude-flow)** | Hive-mind intelligence with swarm coordination | โ Single project context<br>โ No cross-codebase communication<br>โ Complex orchestration graph required |
| **[Agent-MCP](https://github.com/rinadelph/Agent-MCP)** | Multi-agent framework with MCP | โ Agents work within same project<br>โ No team/project isolation<br>โ Shared memory model, not independent contexts |
| **[Claude Code MCP Server](https://github.com/nexus-digital-automations/claude_code_mcp_2)** | Orchestrate Claude agents across iTerm2 | โ Terminal-specific (iTerm2 only)<br>โ Manual session management<br>โ No automatic context routing |
| **[Zen MCP](https://github.com/BeehiveInnovations/zen-mcp-server)** | Multi-model coordination for Claude Code | โ Different AI models, not different projects<br>โ Single codebase focus |
| **[AutoGen](https://microsoft.github.io/autogen/)** | Multi-agent conversation framework | โ Python/programming specific<br>โ Not integrated with Claude Code<br>โ No project isolation |
| **[Semantic Kernel Orchestration](https://learn.microsoft.com/en-us/semantic-kernel/frameworks/agent/agent-orchestration/)** | Agent coordination patterns | โ General framework, not Claude-specific<br>โ No native stdio streaming |
### Comparison Matrix
| Feature | Iris MCP | Symphony of One | Claude-Flow | Agent-MCP | Others |
|---------|-----------|-----------------|-------------|-----------|--------|
| **Cross-Project Communication** | โ
| โ | โ | โ | โ |
| **Independent Team Contexts** | โ
| โ | โ | โ | โ |
| **Direct Agent-to-Agent Messaging** | โ
| โ | โ | โ | โ |
| **Bidirectional Stdio Streaming** | โ
| โ | โ | โ | โ |
| **Per-Team MCP Server Access** | โ
| โ | โ | โ | โ |
| **"Ask Team X" Natural Language** | โ
| โ | โ | โ | โ |
| **Zero Shared State** | โ
| โ | โ | โ | โ |
| **Project-Specific .claude/ Config** | โ
| โ | โ | โ | โ |
| **Fire & Forget Notifications** | โ
| โ | โ | โ | โ |
| **Synchronous Ask/Reply Pattern** | โ
| โ | โ | โ | โ |
---
## ๐ฅ What Makes Iris MCP Revolutionary
### 1. **First True Cross-Codebase Coordination**
All existing solutions work within a **single project boundary**. Iris MCP breaks this limitation by enabling communication between completely independent codebases, each with their own:
- Directory structure
- Dependencies and node_modules
- `.claude/` configuration
- MCP servers
- Git repositories
- Team-specific context
**Example:** Your frontend in TypeScript/React can coordinate with your backend in Python/Django, and your mobile app in Swiftโall simultaneously.
### 2. **Context Isolation = Better Results**
Each team's Claude instance maintains **complete context isolation**:
```
Team Frontend Claude knows:
โ
React components, Tailwind classes, Redux patterns
โ
Frontend-specific MCP servers (Figma, Storybook)
โ
Frontend CLAUDE.md context
โ Backend database schemas
โ Mobile iOS/Android specifics
Team Backend Claude knows:
โ
Database schemas, API endpoints, migrations
โ
Backend-specific MCP servers (PostgreSQL, Redis)
โ
Backend CLAUDE.md context
โ Frontend component structure
โ Mobile app architecture
```
This isolation means **more accurate, specialized responses** from each team agent.
### 3. **Natural Language Collaboration**
Instead of rigid APIs or function calls, communication happens in natural language:
```
"Ask Team Mobile if they support push notifications yet"
"Tell Team Backend we're deprecating the /v1/users endpoint"
"Coordinate with all teams to update the User model"
```
The MCP server handles the orchestration, but the agents communicate like human team members would.
### 4. **Leverages Existing Claude Code Features**
Iris MCP doesn't reinvent the wheelโit builds on Claude Code's native capabilities:
- **Stdio streaming** (already supported)
- **Project-specific MCP servers** (already supported)
- **Session management** (already supported)
- **.claude/ configurations** (already supported)
It simply provides the **missing coordination layer**.
### 5. **Addresses Real Developer Pain**
From GitHub Issue [#2929](https://github.com/anthropics/claude-code/issues/2929):
> "Could be done with all sorts of APIs... MCP (meaning each instance of claude could expose its own MCP server, or register itself to a global MCP server of all claudes on the system, to make itself discoverable and callable from other claudes)...
>
> Use cases are infinite. Here are some: generalists vs specialists claudes: I could have a specialist claude run on my specific server answering to natural language requests, while a local generalist claude call it, having no clue of the specific API."
**Developers are already asking for this!** Iris MCP delivers it.
---
## ๐ก Use Cases
### 1. **Breaking Change Propagation**
**Scenario:** You modify a shared API contract in the backend
```
You (in Backend): "I'm changing the /users endpoint to require authentication.
Using teams MCP, notify all consuming teams and help them update."
Backend Claude:
โ teams.notify("frontend", "Breaking change: /users now requires auth header")
โ teams.notify("mobile", "Breaking change: /users now requires auth header")
โ teams.notify("analytics", "Breaking change: /users now requires auth header")
Each team's Claude receives the notification on their next session:
"You have a pending message from Team Backend..."
```
### 2. **Cross-Team Code Review**
**Scenario:** Frontend needs backend expertise
```
You (in Frontend): "I'm seeing 500 errors from the API. Ask Team Backend
what could cause this error response."
Frontend Claude โ Iris MCP โ Backend Claude analyzes logs and error handlers
Backend Claude: "The 500 errors occur when the database connection pool is exhausted.
You should implement exponential backoff retries."
Frontend Claude implements retry logic based on backend's recommendation.
```
### 3. **Feature Coordination**
**Scenario:** Implementing a feature across multiple codebases
```
You (in Backend): "I've implemented real-time notifications via WebSocket.
Ask Team Frontend if they're ready to integrate, and ask Team Mobile about
their WebSocket library support."
Backend Claude:
โ teams.ask("frontend", "Ready for WebSocket integration? Port 8080")
โ teams.ask("mobile", "Do you have WebSocket library support?")
Frontend Claude: "Yes, we use socket.io-client. Can integrate this week."
Mobile Claude: "Using Starscream for iOS. Need connection URL and auth flow docs."
Backend Claude: "Frontend ready this week. Mobile needs documentation."
```
### 4. **Dependency Updates**
**Scenario:** Core library version upgrade
```
You (in Shared Libs): "We're upgrading to React 19. Using teams MCP,
check which teams are affected and help them update."
Libs Claude:
โ teams.ask("frontend", "You use React 18.2. Can you upgrade to 19?")
โ teams.ask("admin-dashboard", "You use React 18.2. Can you upgrade to 19?")
โ teams.ask("mobile", "Do you use any React Native dependencies?")
Collects responses, identifies blockers, creates upgrade plan.
```
### 5. **Architecture Decisions**
**Scenario:** Need consensus across teams
```
You (in Infrastructure): "We're considering migrating from REST to GraphQL.
Get opinions from all engineering teams."
Infrastructure Claude:
โ teams.ask("frontend", "Thoughts on migrating to GraphQL?")
โ teams.ask("backend", "Can you implement GraphQL resolvers?")
โ teams.ask("mobile", "Do you have GraphQL client libraries?")
Synthesizes responses into recommendation document.
```
---
## ๐ ๏ธ Implementation Plan
### Phase 1: Core MCP Server (MVP)
**File Structure:**
```
teams-mcp/
โโโ src/
โ โโโ server.ts # MCP server entry point
โ โโโ teams-registry.ts # Team directory mapping
โ โโโ stdio-manager.ts # Claude Code process spawning
โ โโโ message-broker.ts # Message routing and queuing
โ โโโ tools/
โ โโโ send-message.ts # teams.send_message tool
โ โโโ ask.ts # teams.ask tool
โ โโโ notify.ts # teams.notify tool
โ โโโ get-status.ts # teams.get_status tool
โโโ config/
โ โโโ teams.json # Team registry configuration
โโโ package.json
โโโ README.md
```
**teams.json Example:**
```json
{
"teams": {
"frontend": {
"path": "/Users/dev/projects/acme-frontend",
"description": "React TypeScript frontend"
},
"backend": {
"path": "/Users/dev/projects/acme-backend",
"description": "Node.js Express API"
},
"mobile": {
"path": "/Users/dev/projects/acme-mobile",
"description": "React Native mobile app"
}
}
}
```
**MCP Tools Implementation:**
```typescript
// teams.send_message(team_name, message, wait_for_reply)
{
name: "teams_send_message",
description: "Send a message to another team's Claude Code instance",
parameters: {
team_name: { type: "string", description: "Target team name" },
message: { type: "string", description: "Message to send" },
wait_for_reply: { type: "boolean", default: true }
}
}
// teams.ask(team_name, question)
{
name: "teams_ask",
description: "Ask another team a question and wait for their response",
parameters: {
team_name: { type: "string", description: "Target team name" },
question: { type: "string", description: "Question to ask" }
}
}
// teams.notify(team_name, message)
{
name: "teams_notify",
description: "Send async notification to team (fire and forget)",
parameters: {
team_name: { type: "string", description: "Target team name" },
message: { type: "string", description: "Notification message" }
}
}
// teams.get_status(team_name?)
{
name: "teams_get_status",
description: "Check team status or list all teams",
parameters: {
team_name: { type: "string", optional: true }
}
}
```
**Stdio Process Management:**
```typescript
import { spawn } from 'child_process';
class StdioManager {
async sendMessageToTeam(teamName: string, message: string): Promise<string> {
const irisConfig = this.getIrisConfig(teamName);
// Spawn Claude Code with stdio streaming
const claude = spawn('claude', [
'--input-format', 'stream-json',
'--output-format', 'stream-json',
], {
cwd: irisConfig.path,
stdio: ['pipe', 'pipe', 'pipe']
});
// Send message via stdin
const stdinMessage = JSON.stringify({
type: 'user',
message: {
role: 'user',
content: message
},
session_id: `teams-${teamName}-${Date.now()}`
}) + '\n';
claude.stdin.write(stdinMessage);
// Collect response from stdout
let response = '';
return new Promise((resolve, reject) => {
claude.stdout.on('data', (data) => {
const lines = data.toString().split('\n');
for (const line of lines) {
if (!line.trim()) continue;
try {
const parsed = JSON.parse(line);
if (parsed.type === 'result') {
claude.kill();
resolve(parsed.response || parsed.content);
}
} catch (e) {
// Continue reading
}
}
});
claude.on('close', (code) => {
if (response) resolve(response);
else reject(new Error(`Process exited with code ${code}`));
});
});
}
}
```
### Phase 2: Advanced Features
1. **Message Queue for Async Notifications**
- Store notifications in SQLite/file system
- Each team's Claude checks for pending messages on startup
- Display via custom hook or startup prompt
2. **Conversation Threading**
- Track multi-turn conversations between teams
- Maintain context across multiple ask/reply cycles
- Session persistence
3. **Team Discovery**
- Auto-detect team directories from monorepo structure
- Scan for `.claude/` directories
- Interactive team registration CLI
4. **Security & Access Control**
- Team-specific permissions (who can message whom)
- Rate limiting to prevent spam
- Message audit logging
5. **Rich Message Formats**
- Attach file diffs
- Include code snippets
- Reference specific commits/PRs
### Phase 3: Ecosystem Integration
1. **GitHub Integration**
- Create cross-repo issues automatically
- Link conversations to PRs
- Tag teams in issue comments
2. **Slack/Discord Webhooks**
- Notify human team members of agent conversations
- Allow humans to inject into agent conversations
- Escalation workflows
3. **Monitoring Dashboard**
- Visualize team communication patterns
- Track response times
- Identify bottlenecks
---
## ๐ Research & References
### Claude Code Documentation
- **[CLI Reference](https://docs.claude.com/en/docs/claude-code/cli-reference)** - Official Claude Code command-line documentation
- **[MCP Documentation](https://docs.claude.com/en/docs/claude-code/mcp)** - Connecting Claude Code to tools via MCP
- **[Streaming Input Mode](https://docs.claude.com/en/docs/claude-code/sdk/streaming-vs-single-mode)** - Documentation on stream-json input/output formats
### Model Context Protocol
- **[MCP GitHub Repository](https://github.com/modelcontextprotocol)** - Official MCP protocol specification
- **[Anthropic MCP Announcement](https://www.anthropic.com/news/model-context-protocol)** - Original MCP announcement and rationale
- **[Building with MCP](https://docs.claude.com/en/api/agent-sdk/overview)** - Agent SDK and MCP integration guide
### Stream Chaining & Multi-Agent
- **[Claude-Flow Wiki: Stream Chaining](https://github.com/ruvnet/claude-flow/wiki/Stream-Chaining)** - Using stream-json for agent pipelines
- **[Multi-Agent Orchestration (Part 3)](https://dev.to/bredmond1019/multi-agent-orchestration-running-10-claude-instances-in-parallel-part-3-29da)** - Running 10+ Claude instances in parallel
### Existing Multi-Agent Systems
- **[Symphony of One MCP](https://github.com/ai-wes/symphony-of-one-mcp)** - Multi-Claude collaboration hub (closest existing solution)
- **[Agent-MCP Framework](https://github.com/rinadelph/Agent-MCP)** - Multi-agent coordination via MCP
- **[Claude Code MCP Server](https://github.com/nexus-digital-automations/claude_code_mcp_2)** - Orchestrating Claude agents
- **[lastmile-ai/mcp-agent](https://github.com/lastmile-ai/mcp-agent)** - Building effective agents with MCP
- **[AutoGen](https://microsoft.github.io/autogen/0.2/docs/Use-Cases/agent_chat/)** - Multi-agent conversation framework by Microsoft
### Orchestration Patterns
- **[Azure AI Agent Orchestration Patterns](https://learn.microsoft.com/en-us/azure/architecture/ai-ml/guide/ai-agent-design-patterns)** - Sequential, concurrent, group chat, handoff, magentic patterns
- **[Semantic Kernel Multi-Agent Orchestration](https://devblogs.microsoft.com/semantic-kernel/semantic-kernel-multi-agent-orchestration/)** - Microsoft's orchestration framework
- **[Agent Communication in Multi-Agent Systems (SmythOS)](https://smythos.com/developers/agent-development/agent-communication-in-multi-agent-systems/)** - Communication protocols and coordination
### Agent-to-Agent Communication
- **[A2A Protocol (O'Reilly)](https://www.oreilly.com/radar/designing-collaborative-multi-agent-systems-with-the-a2a-protocol/)** - Agent-to-agent communication standard
- **[AI Agent Orchestration (IBM)](https://www.ibm.com/think/topics/ai-agent-orchestration)** - Centralized, decentralized, and hierarchical orchestration
- **[Multi-Agent Coordination Strategies (Galileo)](https://galileo.ai/blog/multi-agent-coordination-strategies)** - Preventing coordination failures
### Community Discussions
- **[GitHub Issue #2929](https://github.com/anthropics/claude-code/issues/2929)** - "Programmatically drive claude instances" - Feature request for exactly this functionality!
- **[Claude Code Best Practices](https://www.anthropic.com/engineering/claude-code-best-practices)** - Official best practices including multi-agent patterns
---
## ๐ Why This Project Matters
### Fills Critical Gaps in AI Tooling
IBM's research on multi-agent systems identified that **"many multi-agent projects struggle with disseminating information between agents and tool output parsing errors, and these impediments can be remedied with MCP."**
However, all existing MCP implementations focus on **single-project contexts**. Iris MCP extends MCP's power to **cross-project coordination**, filling a critical gap in the ecosystem.
### Enables True Team-Scale AI
Current AI coding tools operate at the **individual developer** or **single repository** level. Iris MCP scales this to the **team** and **organization** level by enabling:
- **Microservices coordination** across service boundaries
- **Frontend-backend synchronization** without manual coordination
- **Monorepo team isolation** with controlled inter-team communication
- **Specialist agent consultation** (security agent, performance agent, etc.)
### Reduces Context Switching Overhead
Studies show developers lose **23 minutes of productivity** on average when context switching between projects. Iris MCP eliminates this by allowing:
- Stay in your current project while coordinating changes
- No need to explain context to multiple Claude instances
- Automatic routing of questions to the right specialist agent
### Foundation for Future Innovations
Iris MCP creates the foundation for:
- **AI Team Leads**: Meta-agents that orchestrate multiple specialist agents
- **Autonomous Feature Development**: End-to-end feature implementation across services
- **24/7 Coordination**: Agents working while humans sleep
- **Cross-Organization Collaboration**: Different companies' agents coordinating on integrations
---
## ๐ Conclusion
Iris MCP represents a **paradigm shift** in how AI coding assistants collaborate. By enabling **cross-project communication through stdio streaming**, it solves real developer pain points that no existing solution addresses.
**What makes this revolutionary:**
โ
**First cross-codebase agent coordination system**
โ
**True team context isolation**
โ
**Natural language collaboration between specialized agents**
โ
**Leverages existing Claude Code infrastructure**
โ
**Solves actively requested community need**
This isn't just an incremental improvementโit's a **fundamental building block** for the future of AI-assisted software development at scale.
**The future of development isn't one AI assistant per developer.**
**It's one AI team per human team.**
Iris MCP makes that future possible today.
---
## ๐ Get Involved
- **GitHub:** [Coming Soon]
- **Documentation:** [Coming Soon]
- **Discord:** [Coming Soon]
**Let's build the future of cross-project AI collaboration together.**