Skip to main content
Glama
by jekakos
README.md3.78 kB
# MCP User Data Enrichment Server A Model Context Protocol (MCP) server that enriches user data by adding social network links. This server can be integrated with AI platforms like [Smithery.ai](https://smithery.ai/) to provide social media link discovery capabilities. ## Features - **User Data Enrichment**: Takes user information (name, birth date) and returns social media links - **Mock Data Support**: Includes pre-configured social links for demonstration - **Dynamic Generation**: Automatically generates social links for new users - **MCP Protocol**: Standard MCP implementation via stdio - **HTTP Wrapper**: Optional HTTP API for remote access - **Smithery Integration**: Ready for integration with Smithery.ai ## Installation ```bash npm install mcp-user-data-enrichment ``` ## Usage ### As MCP Server (Recommended for Smithery) ```bash # Direct stdio usage node src/mcp-server.js # Or via npm script npm run mcp ``` ### As HTTP Server ```bash # Start HTTP server on port 3000 npm start ``` ## API Endpoints ### HTTP API (when running as server) - `GET /status` - Server status - `GET /tools` - List available tools - `POST /tools/call` - Call any tool - `POST /enrich-user` - Enrich user data ### MCP Protocol The server provides one tool: `enrich_user_data` **Input Schema:** ```json { "firstName": "string", "lastName": "string", "birthDate": "string (YYYY-MM-DD)" } ``` **Output:** ```json { "user": { "firstName": "John", "lastName": "Smith", "birthDate": "1990-01-01" }, "socialLinks": { "instagram": "https://instagram.com/john_smith", "facebook": "https://facebook.com/john.smith", "twitter": "https://twitter.com/john_smith", "linkedin": "https://linkedin.com/in/john_smith" } } ``` ## Smithery.ai Integration This MCP server is designed to work with [Smithery.ai](https://smithery.ai/), a platform for AI agent orchestration. ### Setup in Smithery 1. **Deploy your server** to a public repository on GitHub 2. **Configure MCP connection** in Smithery: ```json { "mcpServers": { "user-data-enrichment": { "command": "node", "args": ["path/to/mcp-server.js"] } } } ``` 3. **Use the tool** in your AI agent workflows ### Example Smithery Usage ```javascript // In your Smithery agent const result = await mcp.callTool('enrich_user_data', { firstName: 'John', lastName: 'Smith', birthDate: '1990-01-01' }); console.log(result.content[0].text); ``` ## Development ```bash # Install dependencies npm install # Run in development mode npm run dev # Test MCP server directly echo '{"jsonrpc": "2.0", "id": 1, "method": "tools/list"}' | node src/mcp-server.js ``` ## Testing ```bash # Run test client node test-client.js # Test with curl curl -X POST http://localhost:3000/enrich-user \ -H "Content-Type: application/json" \ -d '{"firstName": "John", "lastName": "Smith", "birthDate": "1990-01-01"}' ``` ## Mock Data The server includes mock social links for these users: - John Smith - Sarah Johnson - Michael Brown For other users, links are generated automatically based on the name. ## Contributing 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Add tests if applicable 5. Submit a pull request ## License MIT License - see LICENSE file for details ## Deployment Files - `Dockerfile` - Docker configuration for containerized deployment - `smithery.yaml` - Smithery.ai configuration file - `.dockerignore` - Docker ignore file for optimized builds ## Related Links - [Model Context Protocol](https://modelcontextprotocol.io/) - [Smithery.ai](https://smithery.ai/) - AI Agent Orchestration Platform - [MCP Inspector](https://github.com/modelcontextprotocol/inspector) - MCP Testing Tool

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jekakos/mcp-user-data-enrichment'

If you have feedback or need assistance with the MCP directory API, please join our Discord server