Skip to main content
Glama

Fusion 360 MCP

by jaskirat1616

Fusion 360 MCP - Multi-Model AI Integration

FusionMCP is a comprehensive Model Context Protocol (MCP) integration layer that connects Autodesk Fusion 360 with multiple AI backends (Ollama, OpenAI, Google Gemini, and Anthropic Claude) to enable AI-powered parametric CAD design through natural language.

Version Python Fusion 360 License

🎯 Features

  • πŸ€– Multi-Model Support: Seamlessly switch between Ollama, OpenAI GPT-4o, Google Gemini, and Claude 3.5

  • πŸ”„ Intelligent Routing: Automatic fallback chain when primary model fails

  • πŸ“ Parametric Design: AI understands and generates parametric CAD operations

  • πŸ›‘οΈ Safety First: Built-in validation for dimensions, units, and geometric feasibility

  • πŸ’Ύ Context Caching: Conversation and design state persistence (JSON/SQLite)

  • 🎨 Fusion 360 Integration: Native add-in for seamless workflow

  • ⚑ Async Architecture: Fast, non-blocking operations with retry logic

  • πŸ“Š Structured Logging: Detailed logs with Loguru

πŸ“‹ Table of Contents

πŸ—οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Fusion 360 User β”‚ β”‚ ↓ β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ Fusion 360 Add-in β”‚ β”‚ β”‚ β”‚ - UI Dialog β”‚ β”‚ β”‚ β”‚ - Action Executor β”‚ β”‚ β”‚ β”‚ - Network Client β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ ↓ HTTP/REST β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ MCP Server (FastAPI) β”‚ β”‚ β”‚ β”‚ - Router β”‚ β”‚ β”‚ β”‚ - Schema Validation β”‚ β”‚ β”‚ β”‚ - Context Cache β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ ↓ β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ ↓ ↓ ↓ ↓ β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ Ollama β”‚ β”‚ OpenAI β”‚ β”‚ Gemini β”‚ β”‚ Claude β”‚ β”‚ β”‚ β”‚ (Local) β”‚ β”‚ API β”‚ β”‚ API β”‚ β”‚ API β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ System Prompt (FusionMCP Personality) β”‚ β”‚ ↓ β”‚ β”‚ Structured JSON Actions β†’ Fusion 360 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Component Overview

  1. Fusion 360 Add-in (fusion_addin/)

    • Python-based Fusion 360 add-in

    • Captures user intent and design context

    • Executes structured CAD actions

    • Real-time UI feedback

  2. MCP Server (mcp_server/)

    • FastAPI-based REST server

    • Routes requests to appropriate LLM

    • Validates and normalizes responses

    • Caches conversation history

  3. LLM Clients (mcp_server/llm_clients/)

    • Unified interface for all models

    • Provider-specific implementations

    • Automatic retry and error handling

  4. System Prompt (prompts/system_prompt.md)

    • Defines FusionMCP personality

    • Enforces JSON output format

    • Provides action schema templates

πŸš€ Installation

Prerequisites

Step 1: Clone Repository

git clone https://github.com/yourusername/fusion360-mcp.git cd fusion360-mcp

Step 2: Install Python Dependencies

# Create virtual environment python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate # Install dependencies pip install -r requirements.txt # Or install in development mode pip install -e .

Step 3: Configure Environment

Create config.json from example:

cp examples/example_config.json config.json

Edit config.json with your API keys:

{ "ollama_url": "http://localhost:11434", "openai_api_key": "sk-proj-...", "gemini_api_key": "AIza...", "claude_api_key": "sk-ant-...", "default_model": "openai:gpt-4o-mini", "mcp_host": "127.0.0.1", "mcp_port": 9000 }

Alternative: Use environment variables (.env file):

OPENAI_API_KEY=sk-proj-... GEMINI_API_KEY=AIza... CLAUDE_API_KEY=sk-ant-...

Step 4: Install Fusion 360 Add-in

  1. Copy fusion_addin/ folder to Fusion 360 add-ins directory:

    • Windows: %APPDATA%\Autodesk\Autodesk Fusion 360\API\AddIns\

    • macOS: ~/Library/Application Support/Autodesk/Autodesk Fusion 360/API/AddIns/

  2. Rename to FusionMCP:

    cp -r fusion_addin "/Users/YOUR_USER/Library/Application Support/Autodesk/Autodesk Fusion 360/API/AddIns/FusionMCP"
  3. Restart Fusion 360

  4. Open Fusion 360 β†’ Scripts and Add-Ins β†’ Add-Ins tab β†’ Select FusionMCP β†’ Run

🎬 Quick Start

1. Start MCP Server

# Activate virtual environment source venv/bin/activate # Start server python -m mcp_server.server

Expected output:

INFO | Logger initialized with level INFO INFO | Cache initialized: json INFO | System prompt loaded INFO | Initialized MCP Router with providers: ['ollama', 'openai', 'gemini', 'claude'] INFO | MCP Server started on 127.0.0.1:9000

2. Test Server (Optional)

curl -X POST http://127.0.0.1:9000/mcp/command \ -H "Content-Type: application/json" \ -d '{ "command": "ask_model", "params": { "provider": "openai", "model": "gpt-4o-mini", "prompt": "Create a 20mm cube" }, "context": { "active_component": "RootComponent", "units": "mm", "design_state": "empty" } }'

3. Use in Fusion 360

  1. Open Fusion 360

  2. Click Scripts and Add-Ins β†’ Add-Ins β†’ FusionMCP β†’ Run

  3. Click MCP Assistant button in toolbar

  4. Enter natural language command:

    • "Create a 20mm cube"

    • "Design a mounting bracket with 4 holes"

    • "Make a cylindrical shaft 10mm diameter, 50mm long"

βš™οΈ Configuration

Full Configuration Options

{ // API Configuration "ollama_url": "http://localhost:11434", "openai_api_key": "sk-proj-...", "gemini_api_key": "AIza...", "claude_api_key": "sk-ant-...", // Model Selection "default_model": "openai:gpt-4o-mini", "fallback_chain": [ "openai:gpt-4o-mini", "gemini:gemini-1.5-flash-latest", "ollama:llama3" ], // Server Settings "mcp_host": "127.0.0.1", "mcp_port": 9000, "allow_remote": false, // Logging "log_level": "INFO", "log_dir": "logs", // Caching "cache_enabled": true, "cache_type": "json", // or "sqlite" "cache_path": "context_cache.json", // Timeouts and Retries "timeout_seconds": 30, "max_retries": 3, "retry_delay": 1.0, // Available Models "models": { "ollama": { "available": ["llama3", "mistral", "codellama"], "default": "llama3" }, "openai": { "available": ["gpt-4o", "gpt-4o-mini", "gpt-4-turbo"], "default": "gpt-4o-mini" }, "gemini": { "available": ["gemini-1.5-pro-latest", "gemini-1.5-flash-latest"], "default": "gemini-1.5-flash-latest" }, "claude": { "available": ["claude-3-5-sonnet-20241022"], "default": "claude-3-5-sonnet-20241022" } } }

πŸ’‘ Usage Examples

Example 1: Simple Geometry

Prompt: "Create a 20mm cube"

Generated Action:

{ "action": "create_box", "params": { "width": 20, "height": 20, "depth": 20, "unit": "mm" }, "explanation": "Creating a 20mm cubic box", "safety_checks": ["dimensions_positive", "units_valid"] }

Example 2: Complex Design

Prompt: "Design a mounting bracket 100x50mm with 4 M5 mounting holes"

Generated Action Sequence:

{ "actions": [ { "action": "create_box", "params": {"width": 100, "height": 50, "depth": 5, "unit": "mm"}, "explanation": "Create base plate" }, { "action": "create_hole", "params": {"diameter": 5.5, "position": {"x": 10, "y": 10}, "unit": "mm"}, "explanation": "M5 clearance hole (10mm edge offset)" }, // ... 3 more holes ], "total_steps": 5 }

Example 3: Parametric Design

Prompt: "Create a shaft with diameter 2x of length"

{ "clarifying_questions": [ { "question": "What is the shaft length?", "context": "Need length to calculate diameter (diameter = 2 Γ— length)", "suggestions": ["50mm", "100mm", "Custom"] } ] }

πŸ“‘ API Reference

Endpoints

POST /mcp/command

Execute MCP command.

Request Body:

{ "command": "ask_model", "params": { "provider": "openai", "model": "gpt-4o-mini", "prompt": "User prompt here", "temperature": 0.7, "max_tokens": 2000 }, "context": { "active_component": "RootComponent", "units": "mm", "design_state": "empty" } }

Response:

{ "status": "success", "message": "Action generated successfully", "actions_to_execute": [...], "llm_response": {...} }

GET /health

Health check.

Response:

{ "status": "healthy", "providers": ["ollama", "openai", "gemini", "claude"], "cache_enabled": true }

GET /models

List available models.

Response:

{ "models": { "ollama": ["llama3", "mistral"], "openai": ["gpt-4o", "gpt-4o-mini"], "gemini": ["gemini-1.5-pro-latest"], "claude": ["claude-3-5-sonnet-20241022"] } }

GET /history?limit=10

Get conversation history.

Response:

{ "conversations": [...], "actions": [...] }

Supported Actions

Action

Description

Required Params

create_box

Create rectangular box

width

,

height

,

depth

,

unit

create_cylinder

Create cylinder

radius

,

height

,

unit

create_sphere

Create sphere

radius

,

unit

create_hole

Create hole

diameter

,

position

,

unit

extrude

Extrude profile

profile

,

distance

,

unit

fillet

Round edges

edges

,

radius

,

unit

apply_material

Apply material

material_name

πŸ”¬ Model Comparison

Feature

Ollama (Local)

OpenAI GPT-4o

Google Gemini

Claude 3.5

Cost

Free

$$

$

$$$

Speed

Fast

Medium

Fast

Medium

Offline

βœ… Yes

❌ No

❌ No

❌ No

JSON Mode

Limited

βœ… Native

Good

Good

Reasoning

Good

Excellent

Very Good

Excellent

Geometry

Good

Very Good

Excellent

Very Good

Creative

Good

Excellent

Very Good

Good

Best For

Privacy, Offline

Creative designs

Spatial reasoning

Safety validation

Recommended Workflows

  1. Creative Design: OpenAI GPT-4o β†’ Claude (validation)

  2. Geometric Precision: Gemini β†’ OpenAI

  3. Privacy-First: Ollama (all tasks)

  4. Cost-Optimized: Gemini Flash β†’ Ollama (fallback)

πŸ› οΈ Development

Project Structure

fusion360-mcp/ β”œβ”€β”€ mcp_server/ # MCP Server β”‚ β”œβ”€β”€ server.py # FastAPI app β”‚ β”œβ”€β”€ router.py # Request routing β”‚ β”œβ”€β”€ schema/ # Pydantic models β”‚ β”œβ”€β”€ llm_clients/ # LLM implementations β”‚ └── utils/ # Utilities β”œβ”€β”€ fusion_addin/ # Fusion 360 Add-in β”‚ β”œβ”€β”€ main.py # Entry point β”‚ β”œβ”€β”€ ui_dialog.py # UI components β”‚ β”œβ”€β”€ fusion_actions.py # Action executor β”‚ └── utils/network.py # Network client β”œβ”€β”€ prompts/ # System prompts β”œβ”€β”€ examples/ # Example configs β”œβ”€β”€ tests/ # Test suite β”œβ”€β”€ requirements.txt # Dependencies └── README.md # This file

Running Tests

# Run all tests pytest tests/ -v # Run specific test file pytest tests/test_mcp_server.py -v # Run with coverage pytest tests/ --cov=mcp_server --cov-report=html

Adding New LLM Provider

  1. Create client in mcp_server/llm_clients/new_provider_client.py:

class NewProviderClient: async def generate(self, model, prompt, system_prompt, temperature, max_tokens): # Implementation return { "provider": "new_provider", "model": model, "output": "...", "json": {...}, "tokens_used": 123 }
  1. Register in router.py:

if config.new_provider_api_key: self.clients["new_provider"] = NewProviderClient(...)

Code Style

  • PEP8 compliant

  • Type annotations required

  • Docstrings for all functions/classes

  • Async/await for I/O operations

πŸ› Troubleshooting

Common Issues

1. Server Won't Start

Error: Address already in use

Solution: Change port in config.json:

{"mcp_port": 9001}

2. Fusion Add-in Not Visible

Solution:

  • Verify add-in is in correct folder

  • Check FusionMCP.manifest exists

  • Restart Fusion 360

  • Check Scripts and Add-Ins β†’ Add-Ins tab

3. API Key Errors

Error: 401 Unauthorized

Solution:

  • Verify API key in config.json

  • Check key has proper permissions

  • Try environment variables instead

4. Ollama Connection Failed

Error: Connection refused

Solution:

# Check Ollama is running ollama list # Start Ollama service ollama serve

5. JSON Parsing Errors

Solution:

  • Check system prompt is loaded

  • Verify model supports JSON mode

  • Use temperature < 0.8 for better structure

  • Enable json_mode=True in OpenAI client

Debug Mode

Enable verbose logging:

{"log_level": "DEBUG"}

Check logs in logs/mcp_server.log

Health Check

# Check server health curl http://127.0.0.1:9000/health # List available models curl http://127.0.0.1:9000/models # View conversation history curl http://127.0.0.1:9000/history?limit=5

πŸ§ͺ Testing the System

Manual CLI Test

curl -X POST http://127.0.0.1:9000/mcp/command \ -H "Content-Type: application/json" \ -d @examples/example_command.json

Python Test Script

import requests command = { "command": "ask_model", "params": { "provider": "openai", "model": "gpt-4o-mini", "prompt": "Create a 10mm cube" }, "context": { "units": "mm", "design_state": "empty" } } response = requests.post("http://127.0.0.1:9000/mcp/command", json=command) print(response.json())

🀝 Contributing

Contributions welcome! Please:

  1. Fork the repository

  2. Create feature branch (git checkout -b feature/amazing-feature)

  3. Commit changes (git commit -m 'Add amazing feature')

  4. Push to branch (git push origin feature/amazing-feature)

  5. Open Pull Request

Development Setup

# Install dev dependencies pip install -e ".[dev]" # Install pre-commit hooks pre-commit install # Run linting ruff check mcp_server/ black mcp_server/

πŸ“„ License

MIT License - see LICENSE file

πŸ™ Acknowledgments

  • Autodesk Fusion 360 API

  • FastAPI framework

  • Anthropic, OpenAI, Google for LLM APIs

  • Ollama for local LLM support

πŸ“ž Support

πŸ—ΊοΈ Roadmap

  • WebSocket streaming for real-time chat

  • Vision model support (CAD screenshot analysis)

  • Multi-agent orchestration

  • Generative Design API integration

  • Geometry export to Markdown/docs

  • Fusion 360 UI palette integration

  • 3D preview before execution

  • Undo/redo action history

  • Cloud deployment support


Built with ❀️ for the Fusion 360 and AI community

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jaskirat1616/fusion360-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server