# Home Assistant Model Context Protocol (MCP)
A standardized protocol for AI assistants to interact with Home Assistant, providing a secure, typed, and extensible interface for controlling smart home devices.
## Overview
The Model Context Protocol (MCP) server acts as a bridge between AI models (like Claude, GPT, etc.) and Home Assistant, enabling AI assistants to:
- Execute commands on Home Assistant devices
- Retrieve information about the smart home
- Stream responses for long-running operations
- Validate parameters and inputs
- Provide consistent error handling
## Features
- **Modular Architecture** - Clean separation between transport, middleware, and tools
- **Typed Interface** - Fully TypeScript typed for better developer experience
- **Multiple Transports**:
- **Standard I/O** (stdin/stdout) for CLI integration
- **HTTP/REST API** with Server-Sent Events support for streaming
- **Middleware System** - Validation, logging, timeout, and error handling
- **Built-in Tools**:
- Light control (brightness, color, etc.)
- Climate control (thermostats, HVAC)
- More to come...
- **Extensible Plugin System** - Easily add new tools and capabilities
- **Streaming Responses** - Support for long-running operations
- **Parameter Validation** - Using Zod schemas
- **Claude & Cursor Integration** - Ready-made utilities for AI assistants
## Getting Started
### Prerequisites
- Node.js 16+
- Home Assistant instance (or you can use the mock implementations for testing)
### Installation
```bash
# Clone the repository
git clone https://github.com/your-repo/homeassistant-mcp.git
# Install dependencies
cd homeassistant-mcp
npm install
# Build the project
npm run build
```
### Running the Server
```bash
# Start with standard I/O transport (for AI assistant integration)
npm start -- --stdio
# Start with HTTP transport (for API access)
npm start -- --http
# Start with both transports
npm start -- --stdio --http
```
### Configuration
Configure the server using environment variables or a `.env` file:
```dotenv
# Server configuration
PORT=3000
NODE_ENV=development
# Execution settings
EXECUTION_TIMEOUT=30000
STREAMING_ENABLED=true
# Transport settings
USE_STDIO_TRANSPORT=true
USE_HTTP_TRANSPORT=true
# Debug and logging
DEBUG_MODE=false
DEBUG_STDIO=false
DEBUG_HTTP=false
SILENT_STARTUP=false
# CORS settings
CORS_ORIGIN=*
```
## Architecture
The MCP server is built with a layered architecture:
1. **Transport Layer** - Handles communication protocols (stdio, HTTP)
2. **Middleware Layer** - Processes requests through a pipeline
3. **Tool Layer** - Implements specific functionality
4. **Resource Layer** - Manages stateful resources
### Tools
Tools are the primary way to add functionality to the MCP server. Each tool:
- Has a unique name
- Accepts typed parameters
- Returns typed results
- Can stream partial results
- Validates inputs and outputs
Example tool registration:
```typescript
import { LightsControlTool } from "./tools/homeassistant/lights.tool.js";
import { ClimateControlTool } from "./tools/homeassistant/climate.tool.js";
// Register tools
server.registerTool(new LightsControlTool());
server.registerTool(new ClimateControlTool());
```
### API
When running with HTTP transport, the server provides a JSON-RPC 2.0 API:
- `POST /api/mcp/jsonrpc` - Execute a tool
- `GET /api/mcp/stream` - Connect to SSE stream for real-time updates
- `GET /api/mcp/info` - Get server information
- `GET /health` - Health check endpoint
## Integration with AI Models
### Claude Integration
```typescript
import { createClaudeToolDefinitions } from "./mcp/index.js";
// Generate Claude-compatible tool definitions
const claudeTools = createClaudeToolDefinitions([
new LightsControlTool(),
new ClimateControlTool()
]);
// Use with Claude API
const messages = [
{ role: "user", content: "Turn on the lights in the living room" }
];
const response = await claude.messages.create({
model: "claude-3-opus-20240229",
messages,
tools: claudeTools
});
```
### Cursor Integration
To use the Home Assistant MCP server with Cursor, add the following to your `.cursor/config/config.json` file:
```json
{
"mcpServers": {
"homeassistant-mcp": {
"command": "bash",
"args": ["-c", "cd ${workspaceRoot} && bun run dist/index.js --stdio 2>/dev/null | grep -E '\\{\"jsonrpc\":\"2\\.0\"'"],
"env": {
"NODE_ENV": "development",
"USE_STDIO_TRANSPORT": "true",
"DEBUG_STDIO": "true"
}
}
}
}
```
This configuration:
1. Runs the MCP server with stdio transport
2. Redirects all stderr output to /dev/null
3. Uses grep to filter stdout for lines containing `{"jsonrpc":"2.0"`, ensuring clean JSON-RPC output
#### Troubleshooting Cursor Integration
If you encounter a "failed to create client" error when using the MCP server with Cursor:
1. Make sure you're using the correct command and arguments in your Cursor configuration
- The bash script approach ensures only valid JSON-RPC messages reach Cursor
- Ensure the server is built by running `bun run build` before trying to connect
2. Ensure the server is properly outputting JSON-RPC messages to stdout:
```bash
bun run dist/index.js --stdio 2>/dev/null | grep -E '\{"jsonrpc":"2\.0"' > json_only.txt
```
Then examine json_only.txt to verify it contains only valid JSON-RPC messages.
3. Make sure grep is installed on your system (it should be available by default on most systems)
4. Try rebuilding the server with:
```bash
bun run build
```
5. Enable debug mode by setting `DEBUG_STDIO=true` in the environment variables
If the issue persists, you can try:
1. Restarting Cursor
2. Clearing Cursor's cache (Help > Developer > Clear Cache and Reload)
3. Using a similar approach with Node.js:
```json
{
"command": "bash",
"args": ["-c", "cd ${workspaceRoot} && node dist/index.js --stdio 2>/dev/null | grep -E '\\{\"jsonrpc\":\"2\\.0\"'"]
}
```
## License
MIT
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
# MCP Server for Home Assistant 🏠🤖
[](LICENSE) [](https://bun.sh) [](https://www.typescriptlang.org) [](https://smithery.ai/server/@jango-blockchained/advanced-homeassistant-mcp)
## Overview 🌐
MCP (Model Context Protocol) Server is my lightweight integration tool for Home Assistant, providing a flexible interface for device management and automation. It's designed to be fast, secure, and easy to use. Built with Bun for maximum performance.
## Core Features ✨
- 🔌 Basic device control via REST API
- 📡 WebSocket/Server-Sent Events (SSE) for state updates
- 🤖 Simple automation rule management
- 🔐 JWT-based authentication
- 🔄 Standard I/O (stdio) transport for integration with Claude and other AI assistants
## Why Bun? 🚀
I chose Bun as the runtime for several key benefits:
- ⚡ **Blazing Fast Performance**
- Up to 4x faster than Node.js
- Built-in TypeScript support
- Optimized file system operations
- 🎯 **All-in-One Solution**
- Package manager (faster than npm/yarn)
- Bundler (no webpack needed)
- Test runner (built-in testing)
- TypeScript transpiler
- 🔋 **Built-in Features**
- SQLite3 driver
- .env file loading
- WebSocket client/server
- File watcher
- Test runner
- 💾 **Resource Efficient**
- Lower memory usage
- Faster cold starts
- Better CPU utilization
- 🔄 **Node.js Compatibility**
- Runs most npm packages
- Compatible with Express/Fastify
- Native Node.js APIs
## Prerequisites 📋
- 🚀 [Bun runtime](https://bun.sh) (v1.0.26+)
- 🏡 [Home Assistant](https://www.home-assistant.io/) instance
- 🐳 Docker (optional, recommended for deployment)
- 🖥️ Node.js 18+ (optional, for speech features)
- 🎮 NVIDIA GPU with CUDA support (optional, for faster speech processing)
## Quick Start 🚀
1. Clone my repository:
```bash
git clone https://github.com/jango-blockchained/homeassistant-mcp.git
cd homeassistant-mcp
```
2. Set up the environment:
```bash
# Make my setup script executable
chmod +x scripts/setup-env.sh
# Run setup (defaults to development)
./scripts/setup-env.sh
# Or specify an environment:
NODE_ENV=production ./scripts/setup-env.sh
# Force override existing files:
./scripts/setup-env.sh --force
```
3. Configure your settings:
- Edit `.env` file with your Home Assistant details
- Required: Add your `HASS_TOKEN` (long-lived access token)
4. Build and launch with Docker:
```bash
# Standard build
./docker-build.sh
# Launch:
docker compose up -d
```
## Docker Build Options 🐳
My Docker build script (`docker-build.sh`) supports different configurations:
### 1. Standard Build
```bash
./docker-build.sh
```
- Basic MCP server functionality
- REST API and WebSocket support
- No speech features
### 2. Speech-Enabled Build
```bash
./docker-build.sh --speech
```
- Includes wake word detection
- Speech-to-text capabilities
- Pulls required images:
- `onerahmet/openai-whisper-asr-webservice`
- `rhasspy/wyoming-openwakeword`
### 3. GPU-Accelerated Build
```bash
./docker-build.sh --speech --gpu
```
- All speech features
- CUDA GPU acceleration
- Optimized for faster processing
- Float16 compute type for better performance
### Build Features
- 🔄 Automatic resource allocation
- 💾 Memory-aware building
- 📊 CPU quota management
- 🧹 Automatic cleanup
- 📝 Detailed build logs
- 📊 Build summary and status
## Environment Configuration 🔧
I've implemented a hierarchical configuration system:
### File Structure 📁
1. `.env.example` - My template with all options
2. `.env` - Your configuration (copy from .env.example)
3. Environment overrides:
- `.env.dev` - Development settings
- `.env.prod` - Production settings
- `.env.test` - Test settings
### Loading Priority ⚡
Files load in this order:
1. `.env` (base config)
2. Environment-specific file:
- `NODE_ENV=development` → `.env.dev`
- `NODE_ENV=production` → `.env.prod`
- `NODE_ENV=test` → `.env.test`
Later files override earlier ones.
## Development 💻
```bash
# Install dependencies
bun install
# Run in development mode
bun run dev
# Run tests
bun test
# Run with hot reload
bun --hot run dev
# Build for production
bun build ./src/index.ts --target=bun
# Run production build
bun run start
```
### Performance Comparison 📊
| Operation | Bun | Node.js |
|-----------|-----|---------|
| Install Dependencies | ~2s | ~15s |
| Cold Start | 300ms | 1000ms |
| Build Time | 150ms | 4000ms |
| Memory Usage | ~150MB | ~400MB |
## Documentation 📚
### Core Documentation
- [Configuration Guide](docs/configuration.md)
- [API Documentation](docs/api.md)
- [Troubleshooting](docs/troubleshooting.md)
### Advanced Features
- [Natural Language Processing](docs/nlp.md) - AI-powered automation analysis and control
- [Custom Prompts Guide](docs/prompts.md) - Create and customize AI behavior
- [Extras & Tools](docs/extras.md) - Additional utilities and advanced features
## Client Integration 🔗
### Cursor Integration 🖱️
Add to `.cursor/config/config.json`:
```json
{
"mcpServers": {
"homeassistant-mcp": {
"command": "bash",
"args": ["-c", "cd ${workspaceRoot} && bun run dist/index.js --stdio 2>/dev/null | grep -E '\\{\"jsonrpc\":\"2\\.0\"'"],
"env": {
"NODE_ENV": "development",
"USE_STDIO_TRANSPORT": "true",
"DEBUG_STDIO": "true"
}
}
}
}
```
### Claude Desktop 💬
Add to your Claude config:
```json
{
"mcpServers": {
"homeassistant-mcp": {
"command": "bun",
"args": ["run", "start", "--port", "8080"],
"env": {
"NODE_ENV": "production"
}
}
}
}
```
### Command Line 💻
Windows users can use the provided script:
1. Go to `scripts` directory
2. Run `start_mcp.cmd`
## Additional Features
### Speech Features 🎤
MCP Server optionally supports speech processing capabilities:
- 🗣️ Wake word detection ("hey jarvis", "ok google", "alexa")
- 🎯 Speech-to-text using fast-whisper
- 🌍 Multiple language support
- 🚀 GPU acceleration support
#### Speech Features Setup
##### Prerequisites
1. 🐳 Docker installed and running
2. 🎮 NVIDIA GPU with CUDA (optional)
3. 💾 4GB+ RAM (8GB+ recommended)
##### Configuration
1. Enable speech in `.env`:
```bash
ENABLE_SPEECH_FEATURES=true
ENABLE_WAKE_WORD=true
ENABLE_SPEECH_TO_TEXT=true
WHISPER_MODEL_PATH=/models
WHISPER_MODEL_TYPE=base
```
2. Choose your STT engine:
```bash
# For standard Whisper
STT_ENGINE=whisper
# For Fast Whisper (GPU recommended)
STT_ENGINE=fast-whisper
CUDA_VISIBLE_DEVICES=0 # Set GPU device
```
##### Available Models 🤖
Choose based on your needs:
- `tiny.en`: Fastest, basic accuracy
- `base.en`: Good balance (recommended)
- `small.en`: Better accuracy, slower
- `medium.en`: High accuracy, resource intensive
- `large-v2`: Best accuracy, very resource intensive
##### Launch with Speech Features
```bash
# Build with speech support
./docker-build.sh --speech
# Launch with speech features:
docker compose -f docker-compose.yml -f docker-compose.speech.yml up -d
```
### Extra Tools 🛠️
I've included several powerful tools in the `extra/` directory to enhance your Home Assistant experience:
1. **Home Assistant Analyzer CLI** (`ha-analyzer-cli.ts`)
- Deep automation analysis using AI models
- Security vulnerability scanning
- Performance optimization suggestions
- System health metrics
2. **Speech-to-Text Example** (`speech-to-text-example.ts`)
- Wake word detection
- Speech-to-text transcription
- Multiple language support
- GPU acceleration support
3. **Claude Desktop Setup** (`claude-desktop-macos-setup.sh`)
- Automated Claude Desktop installation for macOS
- Environment configuration
- MCP integration setup
See [Extras Documentation](docs/extras.md) for detailed usage instructions and examples.
## License 📄
MIT License. See [LICENSE](LICENSE) for details.
## Author 👨💻
Created by [jango-blockchained](https://github.com/jango-blockchained)
## Running with Standard I/O Transport 📝
MCP Server supports a JSON-RPC 2.0 stdio transport mode for direct integration with AI assistants like Claude:
### MCP Stdio Features
✅ **JSON-RPC 2.0 Compatibility**: Full support for the MCP protocol standard
✅ **NPX Support**: Run directly without installation using `npx homeassistant-mcp`
✅ **Auto Configuration**: Creates necessary directories and default configuration
✅ **Cross-Platform**: Works on macOS, Linux, and Windows
✅ **Claude Desktop Integration**: Ready to use with Claude Desktop
✅ **Parameter Validation**: Automatic validation of tool parameters
✅ **Error Handling**: Standardized error codes and handling
✅ **Detailed Logging**: Logs to files without polluting stdio
### Option 1: Using NPX (Easiest)
Run the MCP server directly without installation using npx:
```bash
# Basic usage
npx homeassistant-mcp
# Or with environment variables
HASS_URL=http://your-ha-instance:8123 HASS_TOKEN=your_token npx homeassistant-mcp
```
This will:
1. Install the package temporarily
2. Automatically run in stdio mode with JSON-RPC 2.0 transport
3. Create a logs directory for logging
4. Create a default .env file if not present
Perfect for integration with Claude Desktop or other MCP clients.
#### Integrating with Claude Desktop
To use MCP with Claude Desktop:
1. Open Claude Desktop settings
2. Go to the "Advanced" tab
3. Under "MCP Server", select "Custom"
4. Enter the command: `npx homeassistant-mcp`
5. Click "Save"
Claude will now use the MCP server for Home Assistant integration, allowing you to control your smart home directly through Claude.
### Option 2: Local Installation
1. Update your `.env` file to enable stdio transport:
```
USE_STDIO_TRANSPORT=true
```
2. Run the server using the stdio-start script:
```bash
./stdio-start.sh
```
Available options:
```
./stdio-start.sh --debug # Enable debug mode
./stdio-start.sh --rebuild # Force rebuild
./stdio-start.sh --help # Show help
```
When running in stdio mode:
- The server communicates via stdin/stdout using JSON-RPC 2.0 format
- No HTTP server is started
- Console logging is disabled to avoid polluting the stdio stream
- All logs are written to the log files in the `logs/` directory
### JSON-RPC 2.0 Message Format
#### Request Format
```json
{
"jsonrpc": "2.0",
"id": "unique-request-id",
"method": "tool-name",
"params": {
"param1": "value1",
"param2": "value2"
}
}
```
#### Response Format
```json
{
"jsonrpc": "2.0",
"id": "unique-request-id",
"result": {
// Tool-specific result data
}
}
```
#### Error Response Format
```json
{
"jsonrpc": "2.0",
"id": "unique-request-id",
"error": {
"code": -32000,
"message": "Error message",
"data": {} // Optional error details
}
}
```
#### Notification Format (Server to Client)
```json
{
"jsonrpc": "2.0",
"method": "notification-type",
"params": {
// Notification data
}
}
```
### Supported Error Codes
| Code | Description | Meaning |
|---------|--------------------|------------------------------------------|
| -32700 | Parse error | Invalid JSON was received |
| -32600 | Invalid request | JSON is not a valid request object |
| -32601 | Method not found | Method does not exist or is unavailable |
| -32602 | Invalid params | Invalid method parameters |
| -32603 | Internal error | Internal JSON-RPC error |
| -32000 | Tool execution | Error executing the tool |
| -32001 | Validation error | Parameter validation failed |
### Integrating with Claude Desktop
To use this MCP server with Claude Desktop:
1. Create or edit your Claude Desktop configuration:
```bash
# On macOS
nano ~/Library/Application\ Support/Claude/claude_desktop_config.json
# On Linux
nano ~/.config/Claude/claude_desktop_config.json
# On Windows
notepad %APPDATA%\Claude\claude_desktop_config.json
```
2. Add the MCP server configuration:
```json
{
"mcpServers": {
"homeassistant-mcp": {
"command": "npx",
"args": ["homeassistant-mcp"],
"env": {
"HASS_TOKEN": "your_home_assistant_token_here",
"HASS_HOST": "http://your_home_assistant_host:8123"
}
}
}
}
```
3. Restart Claude Desktop.
4. In Claude, you can now use the Home Assistant MCP tools.
### JSON-RPC 2.0 Message Format
## Usage
### Using NPX (Easiest)
The simplest way to use the Home Assistant MCP server is through NPX:
```bash
# Start the server in stdio mode
npx homeassistant-mcp
```
This will automatically:
1. Start the server in stdio mode
2. Output JSON-RPC messages to stdout
3. Send log messages to stderr
4. Create a logs directory if it doesn't exist
You can redirect stderr to hide logs and only see the JSON-RPC output:
```bash
npx homeassistant-mcp 2>/dev/null
```
### Manual Installation
If you prefer to install the package globally or locally:
```bash
# Install globally
npm install -g homeassistant-mcp
# Then run
homeassistant-mcp
```
Or install locally:
```bash
# Install locally
npm install homeassistant-mcp
# Then run using npx
npx homeassistant-mcp
```
### Advanced Usage