Skip to main content
Glama

product-hunt-mcp

by jaipandya
collections.py•4.92 kB
""" Collection-related tools for the Product Hunt MCP server. """ import logging from typing import Any, Dict from product_hunt_mcp.api.client import execute_graphql_query from product_hunt_mcp.api.queries import COLLECTION_QUERY, COLLECTIONS_QUERY from product_hunt_mcp.schemas.validation import COLLECTION_SCHEMA, COLLECTIONS_SCHEMA from product_hunt_mcp.utils.common import ( add_id_or_slug, apply_pagination_defaults, execute_and_check_query, extract_pagination, format_response, handle_errors, require_token, ) from product_hunt_mcp.utils.validation import validate_with_schema logger = logging.getLogger("ph_mcp") def register_collection_tools(mcp): """Register collection-related tools with the MCP server.""" @mcp.tool() @require_token @handle_errors @validate_with_schema(COLLECTION_SCHEMA) def get_collection(id: str = None, slug: str = None) -> Dict[str, Any]: """ Retrieve detailed information about a specific collection by ID or slug. Parameters: - id (str, optional): The collection's unique ID. - slug (str, optional): The collection's slug (e.g., "best-productivity-apps"). At least one of `id` or `slug` must be provided. Returns: - success (bool) - data (dict): If successful, contains collection details: - id, name, description, follower_count, posts, etc. - error (dict, optional) - rate_limits (dict) Notes: - Returns an error if neither `id` nor `slug` is provided, or if the collection is not found. """ params = {k: v for k, v in {"id": id, "slug": slug}.items() if v is not None} logger.info("collections.get_collection called", extra=params) variables = {} add_id_or_slug(variables, id, slug) # Execute the query and check if collection exists id_or_slug = id or slug collection_data, rate_limits, error = execute_and_check_query( COLLECTION_QUERY, variables, "collection", id_or_slug ) if error: return format_response(False, error=error, rate_limits=rate_limits) return format_response(True, data=collection_data, rate_limits=rate_limits) @mcp.tool() @require_token @handle_errors @validate_with_schema(COLLECTIONS_SCHEMA) def get_collections( featured: bool = None, user_id: str = None, post_id: str = None, order: str = "FOLLOWERS_COUNT", count: int = 10, after: str = None, ) -> Dict[str, Any]: """ Retrieve a list of collections with optional filters. Parameters: - featured (bool, optional): Only return featured collections if True. - user_id (str, optional): Filter to collections created by this user ID. - post_id (str, optional): Filter to collections that include this post ID. - order (str, optional): Sorting order. Valid values: FOLLOWERS_COUNT (default), NEWEST. - count (int, optional): Number of collections to return (default: 10, max: 20). - after (str, optional): Pagination cursor for next page. Returns: - success (bool) - data (dict): If successful, contains: - collections (list): List of collection objects (id, name, etc.) - pagination (dict): { end_cursor, has_next_page } - error (dict, optional) - rate_limits (dict) Notes: - If no collections match, `collections` will be an empty list. """ params = { k: v for k, v in { "featured": featured, "user_id": user_id, "post_id": post_id, "order": order, "count": count, "after": after, }.items() if v is not None } logger.info("collections.get_collections called", extra=params) # Apply pagination defaults variables = apply_pagination_defaults(count, after) # Add order parameter variables["order"] = order # Add optional filters if featured is not None: variables["featured"] = featured if user_id: variables["userId"] = user_id if post_id: variables["postId"] = post_id result, rate_limits, error = execute_graphql_query(COLLECTIONS_QUERY, variables) if error: return format_response(False, error=error, rate_limits=rate_limits) # Extract collections collections_data = result["data"]["collections"] return format_response( True, data={ "collections": collections_data["edges"], "pagination": extract_pagination(collections_data["pageInfo"]), }, rate_limits=rate_limits, )

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jaipandya/producthunt-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server