Skip to main content
Glama

RAG Document Server

by jaimeferj
test_setup.py3.24 kB
"""Simple test script to verify the RAG system setup.""" import asyncio from pathlib import Path from config.settings import settings async def test_setup(): """Test the RAG system setup.""" print("RAG System Setup Test") print("=" * 50) print() # Test 1: Check environment variables print("1. Checking environment variables...") try: api_key = settings.google_api_key if api_key and api_key != "your_api_key_here": print(" ✓ GOOGLE_API_KEY is set") else: print(" ✗ GOOGLE_API_KEY is not set or using default value") print(" Please set your Google API key in .env file") return False except Exception as e: print(f" ✗ Error loading settings: {e}") return False # Test 2: Check dependencies print("\n2. Checking dependencies...") try: import fastapi import qdrant_client import google.generativeai import mcp print(" ✓ All required packages are installed") except ImportError as e: print(f" ✗ Missing dependency: {e}") print(" Run: pip install -e .") return False # Test 3: Test Google AI connection print("\n3. Testing Google AI Studio connection...") try: import google.generativeai as genai genai.configure(api_key=settings.google_api_key) # Try to generate a simple embedding result = genai.embed_content( model=f"models/{settings.embedding_model}", content="test", task_type="retrieval_document", ) if result and "embedding" in result: print(" ✓ Successfully connected to Google AI Studio") print(f" ✓ Embedding model ({settings.embedding_model}) is working") else: print(" ✗ Unexpected response from Google AI Studio") return False except Exception as e: print(f" ✗ Error connecting to Google AI Studio: {e}") print(" Check your API key and internet connection") return False # Test 4: Test Qdrant initialization print("\n4. Testing Qdrant vector database...") try: from qdrant_client import QdrantClient client = QdrantClient(path=":memory:") # Use in-memory for testing print(" ✓ Qdrant client initialized successfully") except Exception as e: print(f" ✗ Error initializing Qdrant: {e}") return False # Test 5: Check example document print("\n5. Checking example document...") example_path = Path("example_document.md") if example_path.exists(): print(" ✓ Example document found") else: print(" ⚠ Example document not found (optional)") # All tests passed print("\n" + "=" * 50) print("✓ All tests passed! Your setup is ready.") print("\nNext steps:") print(" 1. Start the FastAPI server: python -m rag_server.server") print(" 2. Or start the MCP server: python -m mcp_server.server") print(" 3. Upload documents and start querying!") return True if __name__ == "__main__": success = asyncio.run(test_setup()) exit(0 if success else 1)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jaimeferj/mcp-rag-docs'

If you have feedback or need assistance with the MCP directory API, please join our Discord server