Skip to main content
Glama

Reviewer MCP

by jaggederest
README.md4.01 kB
# Reviewer MCP An MCP (Model Context Protocol) service that provides AI-powered development workflow tools. It supports multiple AI providers (OpenAI and Ollama) and offers standardized tools for specification generation, code review, and project management. ## Features - **Specification Generation**: Create detailed technical specifications from prompts - **Specification Review**: Review specifications for completeness and provide critical feedback - **Code Review**: Analyze code changes with focus on security, performance, style, or logic - **Test Runner**: Execute tests with LLM-friendly formatted output - **Linter**: Run linters with structured output formatting - **Pluggable AI Providers**: Support for both OpenAI and Ollama (local models) ## Installation ```bash npm install npm run build ``` ## Configuration ### Environment Variables Create a `.env` file based on `.env.example`: ```bash # AI Provider Configuration AI_PROVIDER=openai # Options: openai, ollama # OpenAI Configuration OPENAI_API_KEY=your_api_key_here OPENAI_MODEL=o1-preview # Ollama Configuration (for local models) OLLAMA_BASE_URL=http://localhost:11434 OLLAMA_MODEL=llama2 ``` ### Project Configuration Create a `.reviewer.json` file in your project root to customize commands: ```json { "testCommand": "npm test", "lintCommand": "npm run lint", "buildCommand": "npm run build", "aiProvider": "ollama", "ollamaModel": "codellama" } ``` ## Using with Claude Desktop Add the following to your Claude Desktop configuration: ```json { "mcpServers": { "reviewer": { "command": "node", "args": ["/path/to/reviewer-mcp/dist/index.js"], "env": { "OPENAI_API_KEY": "your-api-key-here" } } } } ``` ## Using with Ollama 1. Install Ollama: https://ollama.ai 2. Pull a model: `ollama pull llama2` or `ollama pull codellama` 3. Set `AI_PROVIDER=ollama` in your `.env` file 4. The service will use your local Ollama instance ## Available Tools ### generate_spec Generate a technical specification document. Parameters: - `prompt` (required): Description of what specification to generate - `context` (optional): Additional context or requirements - `format` (optional): Output format - "markdown" or "structured" ### review_spec Review a specification for completeness and provide critical feedback. Parameters: - `spec` (required): The specification document to review - `focusAreas` (optional): Array of specific areas to focus the review on ### review_code Review code changes and provide feedback. Parameters: - `diff` (required): Git diff or code changes to review - `context` (optional): Context about the changes - `reviewType` (optional): Type of review - "security", "performance", "style", "logic", or "all" ### run_tests Run standardized tests for the project. Parameters: - `testCommand` (optional): Test command to run (defaults to configured command) - `pattern` (optional): Test file pattern to match - `watch` (optional): Run tests in watch mode ### run_linter Run standardized linter for the project. Parameters: - `lintCommand` (optional): Lint command to run (defaults to configured command) - `fix` (optional): Attempt to fix issues automatically - `files` (optional): Array of specific files to lint ## Development ```bash # Run in development mode npm run dev # Run tests npm test # Run unit tests only npm run test:unit # Run integration tests (requires Ollama) npm run test:integration # Type checking npm run typecheck # Linting npm run lint ``` ### End-to-End Testing The project includes a comprehensive e2e test that validates the full workflow using a real Ollama instance: 1. Install and start Ollama: https://ollama.ai 2. Pull a model: `ollama pull llama2` 3. Run the test: `npm run test:e2e` The e2e test demonstrates: - Specification generation - Specification review - Code creation - Code review - Linting - Test execution All using real AI responses from your local Ollama instance. ## License MIT

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jaggederest/mcp_reviewer'

If you have feedback or need assistance with the MCP directory API, please join our Discord server