Skip to main content
Glama

MCP Advisor

MIT License
88
64
  • Apple
  • Linux
README.md14.3 kB
# MCP Advisor [![Model Context Protocol](https://img.shields.io/badge/Model%20Context%20Protocol-purple)](https://modelcontextprotocol.org) [![npm version](https://img.shields.io/npm/v/@xiaohui-wang/mcpadvisor.svg)](https://www.npmjs.com/package/@xiaohui-wang/mcpadvisor) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![DeepWiki](https://img.shields.io/badge/DeepWiki-istarwyh%2Fmcpadvisor-blue.svg?logo=)](https://deepwiki.com/istarwyh/mcpadvisor) [![Install with VS Code](https://img.shields.io/badge/VS_Code-Install_Server-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect/mcp/install?name=mcpadvisor&inputs=%5B%5D&config=%7B%22command%22%3A%22npx%22%2C%22args%22%3A%5B%22-y%22%2C%22%40xiaohui-wang%2Fmcpadvisor%22%5D%7D) [![smithery badge](https://smithery.ai/badge/@istarwyh/mcpadvisor)](https://smithery.ai/server/@istarwyh/mcpadvisor) <!-- DeepWiki badge generated by https://deepwiki.ryoppippi.com/ --> [![Verified on MseeP](https://mseep.ai/badge.svg)](https://mseep.ai/app/a6ebedc6-e004-46f0-b7ec-e692a17ee7aa) [![MCP Badge](https://lobehub.com/badge/mcp/istarwyh-mcpadvisor)](https://lobehub.com/mcp/istarwyh-mcpadvisor) <a href="https://glama.ai/mcp/servers/@istarwyh/mcpadvisor"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@istarwyh/mcpadvisor/badge" alt="Advisor MCP server" /> </a> [English](./README.md) | [简体中文](./README_zh.md) ## Introduction MCP Advisor is a discovery and recommendation service that helps AI assistants explore Model Context Protocol (MCP) servers using natural language queries. It makes it easier for users to find and leverage MCP tools suitable for specific tasks. ## User Stories 1. **Discover & Recommend MCP Servers** - As an AI agent developer, I want to quickly find the right MCP servers for a specific task using natural-language queries. - Example prompt: `"Find MCP servers for insurance risk analysis"` 2. **Install & Configure MCP Servers** - As a regular user who discovers a useful MCP server, I want to install and start using it as quickly as possible. - Example prompt: `"Install this MCP: https://github.com/Deepractice/PromptX"` ![](https://xiaohui-zhangjiakou.oss-cn-zhangjiakou.aliyuncs.com/image/202506221717969.png) ### Demo https://github.com/user-attachments/assets/7a536315-e316-4978-8e5a-e8f417169eb1 ### Usage Once configured, the Nacos provider will be automatically enabled and used when searching for MCP servers. You can query it using natural language, for example: ``` Find MCP servers for insurance risk analysis ``` Or more specifically: ``` Search for MCP servers with natural language processing capabilities ``` ## Documentation Navigation - [Quick Start Guide](docs/GETTING_STARTED.md) - Installation, configuration, and basic usage - [Technical Reference](docs/TECHNICAL_REFERENCE.md) - Advanced features and search providers - [Contributing Guide](CONTRIBUTING.md) - Development setup and contribution guidelines - [Architecture Documentation](docs/ARCHITECTURE.md) - System architecture details - [Troubleshooting](docs/TROUBLESHOOTING.md) - Common issues and solutions - [Roadmap](ROADMAP.md) - Future development plans ## Quick Start ### Installation The fastest way is to integrate MCP Advisor through MCP configuration: ```json { "mcpServers": { "mcpadvisor": { "command": "npx", "args": ["-y", "@xiaohui-wang/mcpadvisor"] } } } ``` Add this configuration to your AI assistant's MCP settings file: - MacOS/Linux: `~/Library/Application Support/Claude/claude_desktop_config.json` - Windows: `%AppData%\Claude\claude_desktop_config.json` ### Installing via Smithery To install Advisor for Claude Desktop automatically via [Smithery](https://smithery.ai/server/@istarwyh/mcpadvisor): ```bash npx -y @smithery/cli install @istarwyh/mcpadvisor --client claude ``` For more installation methods and detailed configuration, see the [Quick Start Guide](docs/GETTING_STARTED.md). ## Developer Guide ### Architecture Overview MCP Advisor adopts a modular architecture with clean separation of concerns and functional programming principles. The codebase has been recently refactored (2025) to improve maintainability and scalability: ```mermaid graph TD Client["Client Application"] --> |"MCP Protocol"| Transport["Transport Layer"] subgraph "MCP Advisor Server" Transport --> |"Request"| SearchService["Search Service"] SearchService --> |"Query"| Providers["Search Providers"] subgraph "Search Providers" Providers --> MeilisearchProvider["Meilisearch Provider"] Providers --> GetMcpProvider["GetMCP Provider"] Providers --> CompassProvider["Compass Provider"] Providers --> NacosProvider["Nacos Provider"] Providers --> OfflineProvider["Offline Provider"] end OfflineProvider --> |"Hybrid Search"| HybridSearch["Hybrid Search Engine"] HybridSearch --> TextMatching["Text Matching"] HybridSearch --> VectorSearch["Vector Search"] SearchService --> |"Merge & Filter"| ResultProcessor["Result Processor"] SearchService --> Logger["Logging System"] end ``` ### Project Structure The codebase follows clean architecture principles with organized directory structure: ``` src/ ├── services/ │ ├── core/ # Core business logic │ │ ├── installation/ # Installation guide services │ │ ├── search/ # Search providers │ │ └── server/ # MCP server implementation │ ├── providers/ # External service providers │ │ ├── meilisearch/ # Meilisearch integration │ │ ├── nacos/ # Nacos service discovery │ │ ├── oceanbase/ # OceanBase vector database │ │ └── offline/ # Offline search engine │ ├── common/ # Shared utilities │ │ ├── api/ # API clients │ │ ├── cache/ # Caching mechanisms │ │ └── vector/ # Vector operations │ └── interfaces/ # Type definitions ├── types/ # TypeScript type definitions ├── utils/ # Utility functions └── tests/ # Test suites ├── unit/ # Unit tests ├── integration/ # Integration tests └── e2e/ # End-to-end tests ``` ### Core Components 1. **Search Service Layer** - Unified search interface and provider aggregation - Support for multiple search providers executing in parallel - Configurable search options (limit, minSimilarity) 2. **Search Providers** - **Meilisearch Provider**: Vector search using Meilisearch - **GetMCP Provider**: API search from the GetMCP registry - **Compass Provider**: API search from the Compass registry - **Nacos Provider**: Service discovery integration - **Offline Provider**: Hybrid search combining text and vectors 3. **Hybrid Search Strategy** - Intelligent combination of text matching and vector search - Configurable weight balancing - Smart adaptive filtering mechanisms 4. **Transport Layer** - Stdio (CLI default) - SSE (Web integration) - REST API endpoints For more detailed architecture documentation, see [ARCHITECTURE.md](docs/ARCHITECTURE.md). ## Developer Quick Start ### Development Environment Setup 1. Clone the repository 2. Install dependencies: ```bash pnpm install ``` 3. Build the project: ```bash pnpm run build ``` 4. Configure environment variables (see [Quick Start Guide](docs/GETTING_STARTED.md)) ### Testing MCP Advisor includes comprehensive testing suites to ensure code quality and functionality. For detailed testing information including unit tests, integration tests, end-to-end testing, and manual testing procedures, see the [Technical Reference](docs/TECHNICAL_REFERENCE.md). #### Testing Run comprehensive tests: ```bash # Run all tests pnpm run check && pnpm run test && pnpm run test:e2e # Automated E2E testing script ./scripts/run-e2e-test.sh ``` For detailed testing information, see [Technical Reference](docs/TECHNICAL_REFERENCE.md). ### Library Usage ```typescript import { SearchService } from '@xiaohui-wang/mcpadvisor'; // Initialize search service const searchService = new SearchService(); // Search for MCP servers const results = await searchService.search('vector database integration'); console.log(results); ``` ### Transport Options MCP Advisor supports multiple transport methods: 1. **Stdio Transport** (default) - Suitable for command-line tools 2. **SSE Transport** - Suitable for web integration 3. **REST Transport** - Provides REST API endpoints For more development details, see [Contributing Guide](CONTRIBUTING.md). ## Contribution Guidelines We welcome contributions to MCP Advisor! ## Usage Examples ### Example Queries Here are some example queries you can use with MCP Advisor: ``` "Find MCP servers for natural language processing" "Document summarization MCP servers" ``` ### Example Response ```json [ { "title": "NLP Toolkit", "description": "Comprehensive natural language processing toolkit with sentiment analysis, entity recognition, and text summarization capabilities.", "github_url": "https://github.com/example/nlp-toolkit", "similarity": 0.92 }, { "title": "Text Processor", "description": "Efficient text processing MCP server with multi-language support.", "github_url": "https://github.com/example/text-processor", "similarity": 0.85 } ] ``` For more examples and advanced usage, see [Technical Reference](docs/TECHNICAL_REFERENCE.md). ## Troubleshooting ### Common Issues 1. **Connection Refused** - Ensure the server is running on the specified port - Check firewall settings 2. **No Results Returned** - Try a more general query - Check network connection to registry APIs 3. **Performance Issues** - Consider adding more specific search terms - Check server resources (CPU/memory) For more troubleshooting information, see [TROUBLESHOOTING.md](docs/TROUBLESHOOTING.md). ## Search Providers MCP Advisor supports multiple search providers that can be used simultaneously: 1. **Compass Search Provider**: Retrieves MCP server information using the Compass API 2. **GetMCP Search Provider**: Uses the GetMCP API and vector search for semantic matching 3. **Meilisearch Search Provider**: Uses Meilisearch for fast, fault-tolerant text search For detailed information about search providers, see [Technical Reference](docs/TECHNICAL_REFERENCE.md). ## Roadmap MCP Advisor is evolving from a simple recommendation system to an intelligent agent orchestration platform. Our vision is to create a system that not only recommends the right MCP servers but also learns from interactions and helps agents dynamically plan and execute complex tasks. ```mermaid gantt title MCP Advisor Evolution Roadmap dateFormat YYYY-MM-DD axisFormat %Y-%m section Foundation Enhanced Search & Recommendation ✓ :done, 2025-01-01, 90d Hybrid Search Engine ✓ :done, 2025-01-01, 90d Provider Priority System ✓ :done, 2025-04-01, 60d section Intelligence Layer Feedback Collection System :active, 2025-04-01, 90d Agent Interaction Analytics :2025-07-01, 120d Usage Pattern Recognition :2025-07-01, 90d section Learning Systems Reinforcement Learning Framework :2025-10-01, 180d Contextual Bandit Implementation :2025-10-01, 120d Multi-Agent Reward Modeling :2026-01-01, 90d section Advanced Features Task Decomposition Engine :2026-01-01, 120d Dynamic Planning System :2026-04-01, 150d Adaptive MCP Orchestration :2026-04-01, 120d section Ecosystem Developer SDK & API :2026-07-01, 90d Custom MCP Training Tools :2026-07-01, 120d Enterprise Integration Framework :2026-10-01, 150d ``` ### Major Development Phases 1. **Recommendation Capability Optimization** (2025 Q2-Q3) - Accept user feedback - Refine recommendation effectiveness - Introduce more indices For a detailed roadmap, see [ROADMAP.md](ROADMAP.md). To Implement the above features, we need to: - [ ] Support Full-Text Index Search - [ ] Utilize Professional Rerank Module like https://github.com/PrithivirajDamodaran/FlashRank or Qwen Rerank Model - [ ] Support Cline marketplace: https://api.cline.bot/v1/mcp/marketplace ## License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/istarwyh/mcpadvisor'

If you have feedback or need assistance with the MCP directory API, please join our Discord server