Skip to main content
Glama

KB-MCP Server

A local-first Knowledge Base with Model Context Protocol (MCP) support. Give your AI a reliable memory. Run it locally. Stream answers in real time.


What is This?

A Knowledge Base (KB) is a structured collection of facts, documents, and embeddings stored in machine-readable form, with interfaces to:

  • Add knowledge

  • Query knowledge (semantic + keyword search)

  • Update/Delete knowledge

This MCP server exposes your KB to any MCP-compatible AI client (Claude, custom agents, etc.).


Why Local-First?

Benefit

Description

Privacy

No cloud leaks — your data stays on your machine

Zero latency

No network round-trips

Offline support

Works without internet

Full control

You own the data and the logic

No vendor lock-in

Swap components freely


Quick Start

Installation

npm install npm run build

Run the Server

npm start

Or for development:

npm run dev

Configure with Claude Desktop

Add to your claude_desktop_config.json:

{ "mcpServers": { "knowledge-base": { "command": "node", "args": ["/path/to/kb-mcp-server/dist/index.js"], "env": { "KB_DATA_DIR": "/path/to/your/data" } } } }

Available Tools

Tool

Description

ingest_document

Add a document with title, content, and metadata

query_knowledge

Semantic search across all documents

list_documents

List documents with pagination

get_document

Get full document by ID

update_document

Update existing document

delete_document

Remove document from KB

kb_stats

Get knowledge base statistics


How It Works

1. User asks a question ↓ 2. AI sends MCP query → KB-MCP Server ↓ 3. KB retrieves relevant facts (semantic search) ↓ 4. AI grounds the answer with real data ↓ 5. Response streams to user ↓ 6. (Optional) New insights stored back

Result: AI answers correctly. Knowledge compounds. No hallucinations.


Architecture

┌─────────────────┐ │ AI Client │ │ (Claude, Agent) │ └────────┬────────┘ │ MCP Protocol ↓ ┌─────────────────┐ │ KB-MCP Server │ ← stdio transport │ ┌───────────┐ │ │ │ Tools │ │ ingest | query | list | delete │ └─────┬─────┘ │ │ ↓ │ │ ┌───────────┐ │ │ │ Engine │ │ Embeddings + Similarity Search │ └─────┬─────┘ │ │ ↓ │ │ ┌───────────┐ │ │ │ Store │ │ JSON file (swap with Chroma/pgvector) │ └───────────┘ │ └─────────────────┘

Configuration

Environment Variable

Default

Description

KB_DATA_DIR

./.kb-data

Directory for storing knowledge base data


Production Enhancements

For production use, consider:

  1. Real embeddings: Replace hash-based embeddings with OpenAI, Cohere, or local models (Ollama)

  2. Vector database: Swap JSON store with Chroma, Qdrant, or pgvector

  3. Chunking: Split large documents into chunks for better retrieval

  4. Hybrid search: Combine semantic + BM25 keyword search

  5. Access control: Add authentication for multi-user setups


License

MIT — Use freely.


Author

Matrix Agent

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/isshiki-dev/kb-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server