Skip to main content
Glama

scenario_modeling

Perform what-if analysis by modeling multiple scenarios with different assumptions in Excel or CSV data to compare outcomes and inform decisions.

Instructions

Perform what-if scenario analysis with multiple assumptions

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
filePathYesPath to the CSV or Excel file with base data
sheetNoSheet name for Excel files (optional)
scenariosYesArray of scenario definitions

Implementation Reference

  • The primary handler function for the 'scenario_modeling' tool. It reads base data from a file, processes multiple scenarios by applying assumptions and calculating metrics using helper methods, and returns structured results or error response.
    async scenarioModeling(args: ToolArgs): Promise<ToolResponse> { const { filePath, sheet, scenarios = [] } = args; try { const baseData = await readFileContent(filePath, sheet); const results = []; for (const scenario of scenarios) { const scenarioResults = { name: scenario.name, assumptions: scenario.assumptions || {}, results: {} }; // Apply scenario assumptions to calculate results // This is a simplified implementation - real scenario modeling would be more complex if (scenario.assumptions) { const modifiedData = this.applyScenarioAssumptions(baseData, scenario.assumptions); // Calculate key metrics for this scenario scenarioResults.results = this.calculateScenarioMetrics(modifiedData, scenario.assumptions); } results.push(scenarioResults); } return { content: [{ type: 'text', text: JSON.stringify({ success: true, analysis: 'Scenario Modeling', scenariosAnalyzed: results.length, results }, null, 2) }] }; } catch (error) { return { content: [{ type: 'text', text: JSON.stringify({ success: false, error: error instanceof Error ? error.message : 'Unknown error', operation: 'scenario_modeling' }, null, 2) }] }; } }
  • Type definition for scenario data structure used in the tool's input scenarios and output results.
    interface ScenarioData { name: string; assumptions: Record<string, number>; results: Record<string, number>; }
  • Helper method that modifies the base data by applying scenario assumptions to matching numeric cells.
    private applyScenarioAssumptions(data: any[][], assumptions: Record<string, number>): any[][] { // Simplified scenario application - in reality this would be much more sophisticated return data.map(row => row.map(cell => { if (typeof cell === 'number' && assumptions[cell.toString()]) { return cell * (1 + assumptions[cell.toString()]); } return cell; })); }
  • Helper method that computes simplified key financial metrics for each scenario based on assumptions.
    private calculateScenarioMetrics(data: any[][], assumptions: Record<string, number>): Record<string, number> { // Simplified metrics calculation return { totalRevenue: 1000000 * (1 + (assumptions.growthRate || 0)), totalExpenses: 700000 * (1 + (assumptions.costIncrease || 0)), netIncome: 300000 * (1 + (assumptions.marginChange || 0)) }; }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ishayoyo/excel-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server