README.md•7.36 kB
# pgtuner_mcp
[](https://smithery.ai/server/@isdaniel/pgtuner_mcp)
<a href="https://glama.ai/mcp/servers/@isdaniel/pgtuner-mcp">
<img width="380" height="200" src="https://glama.ai/mcp/servers/@isdaniel/pgtuner-mcp/badge" />
</a>
A Model Context Protocol (MCP) server that provides AI-powered PostgreSQL performance tuning capabilities. This server helps identify slow queries, recommend optimal indexes, analyze execution plans, and leverage HypoPG for hypothetical index testing.
## Features
### Query Analysis
- Get top resource-consuming queries from `pg_stat_statements`
- Analyze query execution plans with `EXPLAIN` and `EXPLAIN ANALYZE`
- Identify slow queries and bottlenecks
### Index Tuning
- Smart index recommendations based on query workload
- Hypothetical index testing with **HypoPG** extension
- Index health analysis (duplicate, unused, bloated indexes)
- Estimate index size before creation
### Database Health
- Connection utilization monitoring
- Vacuum health and transaction ID wraparound checks
- Replication lag monitoring
- Buffer cache hit rate analysis
- Sequence limit warnings
### HypoPG Integration
When the HypoPG extension is available, the server can:
- Create hypothetical indexes without actual disk usage
- Test how PostgreSQL would use potential indexes
- Compare query plans with and without proposed indexes
- Hide existing indexes to test removal impact
## Installation
### Standard Installation (for MCP clients like Claude Desktop)
```bash
pip install pgtuner_mcp
```
### Manual Installation
```bash
git clone https://github.com/example/pgtuner_mcp.git
cd pgtuner_mcp
pip install -e .
```
## Configuration
### Environment Variables
- `DATABASE_URI`: PostgreSQL connection string (required)
- Format: `postgresql://user:password@host:port/database`
### MCP Client Configuration
Add to your `cline_mcp_settings.json`:
```json
{
"mcpServers": {
"pgtuner_mcp": {
"command": "python",
"args": ["-m", "pgtuner_mcp"],
"env": {
"DATABASE_URI": "postgresql://user:password@localhost:5432/mydb"
},
"disabled": false,
"autoApprove": []
}
}
}
```
## Server Modes
### 1. Standard MCP Mode (Default)
```bash
# Default mode (stdio)
python -m pgtuner_mcp
# Explicitly specify stdio mode
python -m pgtuner_mcp --mode stdio
```
### 2. HTTP SSE Mode (Legacy Web Applications)
```bash
# Start SSE server on default host/port (0.0.0.0:8080)
python -m pgtuner_mcp --mode sse
# Specify custom host and port
python -m pgtuner_mcp --mode sse --host localhost --port 3000
# Enable debug mode
python -m pgtuner_mcp --mode sse --debug
```
### 3. Streamable HTTP Mode (Modern MCP Protocol - Recommended)
The streamable-http mode implements the modern MCP Streamable HTTP protocol with a single `/mcp` endpoint. It supports both stateful (session-based) and stateless modes.
```bash
# Start Streamable HTTP server in stateful mode (default)
python -m pgtuner_mcp --mode streamable-http
# Start in stateless mode (fresh transport per request)
python -m pgtuner_mcp --mode streamable-http --stateless
# Specify custom host and port
python -m pgtuner_mcp --mode streamable-http --host localhost --port 8080
# Enable debug mode
python -m pgtuner_mcp --mode streamable-http --debug
```
**Stateful vs Stateless:**
- **Stateful (default)**: Maintains session state across requests using `mcp-session-id` header. Ideal for long-running interactions.
- **Stateless**: Creates a fresh transport for each request with no session tracking. Ideal for serverless deployments or simple request/response patterns.
**Endpoint:** `http://{host}:{port}/mcp`
## Available Tools
### Query Analysis Tools
1. **`get_top_queries`** - Get the slowest or most resource-intensive queries
- Parameters: `sort_by` (total_time, mean_time, resources), `limit`
2. **`explain_query`** - Explain the execution plan for a SQL query
- Parameters: `sql`, `analyze` (boolean), `hypothetical_indexes` (optional)
### Index Tuning Tools
3. **`analyze_workload_indexes`** - Analyze frequently executed queries and recommend optimal indexes
- Parameters: `max_index_size_mb`, `method` (dta, greedy)
4. **`analyze_query_indexes`** - Analyze specific SQL queries and recommend indexes
- Parameters: `queries` (list), `max_index_size_mb`
5. **`get_index_recommendations`** - Get index recommendations for a single query
- Parameters: `query`, `max_recommendations`
6. **`test_hypothetical_index`** - Test how a hypothetical index would affect query performance
- Parameters: `table`, `columns`, `query`, `using` (btree, hash, etc.)
7. **`list_hypothetical_indexes`** - List all current hypothetical indexes
8. **`reset_hypothetical_indexes`** - Remove all hypothetical indexes
### Database Health Tools
9. **`analyze_db_health`** - Comprehensive database health analysis
- Parameters: `health_type` (index, connection, vacuum, sequence, replication, buffer, constraint, all)
10. **`get_index_health`** - Analyze index health (duplicate, unused, bloated)
### Utility Tools
11. **`execute_sql`** - Execute a SQL query (respects access mode)
- Parameters: `sql`
12. **`list_schemas`** - List all schemas in the database
13. **`get_table_info`** - Get detailed information about a table
- Parameters: `schema`, `table`
## HypoPG Extension
#### Enable in Database
```sql
CREATE EXTENSION hypopg;
```
## Example Usage
### Find Slow Queries
```python
# Get top 10 resource-consuming queries
result = await get_top_queries(sort_by="resources", limit=10)
```
### Analyze and Optimize a Query
```python
# Get explain plan
plan = await explain_query(
sql="SELECT * FROM orders WHERE user_id = 123 AND status = 'pending'"
)
# Get index recommendations
recommendations = await analyze_query_indexes(
queries=["SELECT * FROM orders WHERE user_id = 123 AND status = 'pending'"]
)
# Test hypothetical index
test_result = await test_hypothetical_index(
table="orders",
columns=["user_id", "status"],
query="SELECT * FROM orders WHERE user_id = 123 AND status = 'pending'"
)
```
### Database Health Check
```python
# Run all health checks
health = await analyze_db_health(health_type="all")
# Check specific areas
index_health = await analyze_db_health(health_type="index")
vacuum_health = await analyze_db_health(health_type="vacuum")
```
## Docker
### Build
```bash
docker build -t pgtuner_mcp .
```
### Run
```bash
# Streamable HTTP mode (recommended)
docker run -p 8080:8080 \
-e DATABASE_URI=postgresql://user:pass@host:5432/db \
pgtuner_mcp --mode streamable-http
# Streamable HTTP stateless mode
docker run -p 8080:8080 \
-e DATABASE_URI=postgresql://user:pass@host:5432/db \
pgtuner_mcp --mode streamable-http --stateless
# SSE mode (legacy)
docker run -p 8080:8080 \
-e DATABASE_URI=postgresql://user:pass@host:5432/db \
pgtuner_mcp --mode sse
# stdio mode (for MCP clients)
docker run \
-e DATABASE_URI=postgresql://user:pass@host:5432/db \
pgtuner_mcp
```
## Requirements
- Python 3.10+
- PostgreSQL 12+ (recommended: 14+)
- `pg_stat_statements` extension (for query analysis)
- `hypopg` extension (optional, for hypothetical index testing)
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.