Skip to main content
Glama
nvidia-nim-deployment-options.md8.76 kB
# NVIDIA NIM Deployment Options for FHIR GraphRAG ## Overview NVIDIA NIM can be deployed in two fundamentally different ways: 1. **NVIDIA API Cloud** - Hosted inference via API calls (like OpenAI) 2. **Self-Hosted NIM** - Run NIM containers on your own GPU infrastructure ## Option 1: NVIDIA API Cloud (Recommended for Development) ### What It Is - NVIDIA hosts the models on their infrastructure - You make API calls over HTTPS - Pay per API call (similar to OpenAI pricing) - **No GPU needed locally** ### Architecture ``` Your MacBook/EC2 Instance └─→ HTTPS API Call └─→ NVIDIA Cloud (hosted models) └─→ Returns embeddings ``` ### Pros - ✅ **No GPU required** - works on MacBook, standard EC2 - ✅ **Fast setup** - just need API key - ✅ **Zero infrastructure** - no Docker, Kubernetes, GPU drivers - ✅ **Auto-scaling** - NVIDIA handles load - ✅ **Always updated** - latest model versions - ✅ **Low startup cost** - pay only for what you use ### Cons - ❌ Data leaves your infrastructure (sent to NVIDIA cloud) - ❌ Per-query costs (can add up at scale) - ❌ Network latency (API call overhead) - ❌ Dependent on NVIDIA service availability - ❌ Rate limits on free tier ### Cost Model **Free Tier:** - Limited requests/day (check build.nvidia.com for current limits) - Good for: Development, testing, small datasets **Paid Tier:** - ~$0.0002 per 1K tokens (estimate - check current pricing) - Example: 10K queries/day × 100 tokens avg = 1M tokens/day = $0.20/day = $6/month ### When to Use - ✅ Development and prototyping - ✅ Low-volume production (<1K queries/day) - ✅ Quick proof-of-concept - ✅ Testing before committing to infrastructure - ✅ **Phase 3 of our implementation** ### Setup 1. Get API key from build.nvidia.com 2. Install: `pip install langchain-nvidia-ai-endpoints` 3. Use in code: ```python from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings embeddings = NVIDIAEmbeddings(model="nvidia/nv-embedqa-e5-v5") vector = embeddings.embed_query("chest pain") ``` --- ## Option 2: Self-Hosted NIM (For Production) ### What It Is - Download NIM Docker containers from NVIDIA - Run on your own GPU infrastructure (AWS, GCP, Azure, on-prem) - Models run locally on your GPUs - You manage infrastructure and scaling ### Architecture Options #### 2a. AWS EC2 with GPU (Simple) ``` AWS EC2 Instance (g5.xlarge) ├─→ NVIDIA A10G GPU (24GB VRAM) ├─→ Docker Engine │ └─→ NIM Container │ └─→ NV-EmbedQA-E5-v5 model └─→ Your FHIR App (localhost connection) ``` **Setup Steps:** 1. Launch EC2 instance (g5.xlarge, g4dn.xlarge, or p3.2xlarge) 2. Install NVIDIA drivers and Docker 3. Pull NIM container: `docker pull nvcr.io/nvidia/nv-embedqa-e5-v5` 4. Run container with GPU support 5. Connect your app to localhost:8000 **Pros:** - ✅ Simple architecture - ✅ Data stays in your infrastructure - ✅ Unlimited queries (limited by GPU capacity) - ✅ Low latency (local inference) - ✅ Full control over model versions **Cons:** - ❌ Fixed cost (instance runs 24/7) - ❌ Manual scaling (need multiple instances for high load) - ❌ You manage GPU drivers, Docker, monitoring - ❌ No auto-scaling **Cost:** - g5.xlarge: $1.006/hour = $24/day = $720/month - g4dn.xlarge: $0.526/hour = $12.62/day = $380/month - Break-even vs API: ~10K-20K queries/day **Instance Types:** | Instance | GPU | VRAM | $/hour | Best For | |----------|-----|------|--------|----------| | g4dn.xlarge | T4 | 16GB | $0.526 | Text embeddings | | g5.xlarge | A10G | 24GB | $1.006 | Text + Vision | | g5.2xlarge | A10G | 24GB | $1.212 | High throughput | | p3.2xlarge | V100 | 16GB | $3.06 | Vision models | #### 2b. AWS EKS with GPU Nodes (Production-Grade) ``` AWS EKS Cluster ├─→ Control Plane ($73/month) ├─→ GPU Node Group (g5.xlarge instances) │ ├─→ NIM Pods (auto-scaling) │ └─→ NVIDIA GPU Operator ├─→ Application Node Group (t3.large instances) │ └─→ FHIR GraphRAG App Pods ├─→ Application Load Balancer └─→ Auto Scaling Groups ``` **Setup Steps:** 1. Create EKS cluster with GPU node group 2. Install NVIDIA GPU Operator (manages drivers) 3. Deploy NIM as Kubernetes Deployment 4. Configure Horizontal Pod Autoscaler 5. Set up Ingress/Load Balancer **Pros:** - ✅ Auto-scaling (scale GPU pods based on load) - ✅ High availability (multi-instance) - ✅ Rolling updates (zero-downtime deployments) - ✅ Enterprise-grade orchestration - ✅ Resource optimization (pack multiple services) **Cons:** - ❌ Complex setup (Kubernetes expertise required) - ❌ Higher baseline cost (EKS + minimum nodes) - ❌ More moving parts to manage - ❌ Longer time to implement **Cost:** - EKS Control Plane: $73/month - 2× g5.xlarge nodes: $1,440/month - Load Balancer: $20/month - **Total: ~$1,533/month** **When to Use:** - ✅ High query volume (>50K/day) - ✅ Variable load patterns - ✅ Multiple NIM models - ✅ Enterprise production requirements #### 2c. AWS SageMaker (Managed Inference) ``` AWS SageMaker ├─→ Model Registry (store NIM models) ├─→ Endpoint (managed inference) │ └─→ GPU instances (auto-scaling) └─→ Monitoring (CloudWatch) ``` **Pros:** - ✅ Fully managed by AWS - ✅ Built-in auto-scaling - ✅ Integrated monitoring - ✅ Pay-per-inference pricing option **Cons:** - ❌ May not support all NIM containers - ❌ Less control than EKS - ❌ Potential vendor lock-in **Cost:** - ml.g5.xlarge: $1.408/hour - Plus data transfer costs --- ## Decision Matrix ### For Phase 3 (Text Embeddings - NOW) **Recommendation: NVIDIA API Cloud** | Requirement | API Cloud | EC2 GPU | EKS | |-------------|-----------|---------|-----| | Quick setup | ✅ Minutes | ⚠️ Hours | ❌ Days | | No GPU needed | ✅ Yes | ❌ No | ❌ No | | Cost to start | ✅ Free tier | ❌ $720/mo | ❌ $1500/mo | | Good for 51 docs | ✅ Perfect | ⚠️ Overkill | ❌ Overkill | ### For Phase 4+ (Vision + Production) **Consider: Self-Hosted if query volume justifies** | Query Volume | Recommendation | Estimated Cost | |--------------|----------------|----------------| | <1K/day | API Cloud | $1-10/month | | 1K-10K/day | API Cloud or EC2 | $50-100/month | | 10K-50K/day | EC2 GPU | $400-800/month | | >50K/day | EKS | $1500+/month | --- ## Hybrid Approach (Recommended Strategy) **Phase 3 (Development):** → Use NVIDIA API Cloud - Validate NIM embeddings work - Test on 51 DocumentReferences - Measure accuracy improvement - **Cost: ~$5/month** **Phase 4 (Scale Testing):** → Still use API Cloud initially - Test with 10K patient dataset - Measure query volume and costs - Calculate break-even point - **Cost: ~$50-100/month** **Production Decision:** → Choose based on actual usage - If <10K queries/day → Stay on API Cloud - If >10K queries/day → Move to EC2 GPU - If >50K queries/day → Consider EKS --- ## Implementation Plan Update ### Immediate (Phase 3): NVIDIA API Cloud ✅ ```bash # No AWS setup needed! export NVIDIA_API_KEY="nvapi-xxx" pip install langchain-nvidia-ai-endpoints python src/setup/nim_text_vectorize.py ``` ### Later (Phase 4+): Evaluate Self-Hosting ```bash # If query volume justifies: # 1. Launch AWS EC2 g5.xlarge # 2. Install NVIDIA drivers + Docker # 3. Pull NIM container # 4. Deploy and benchmark ``` --- ## Security Considerations ### API Cloud - ✅ Data encrypted in transit (HTTPS) - ⚠️ Data processed on NVIDIA servers - ✅ SOC 2 compliant (NVIDIA) - ⚠️ Check compliance requirements (HIPAA, etc.) ### Self-Hosted - ✅ Data never leaves your infrastructure - ✅ Full control over security - ✅ HIPAA compliant (if configured properly) - ⚠️ You responsible for security patches --- ## Recommendation for FHIR GraphRAG Project **Start with NVIDIA API Cloud** because: 1. **Phase 3 focus**: Text embeddings on 51 documents 2. **MacBook friendly**: No GPU setup needed 3. **Fast iteration**: Validate approach quickly 4. **Low cost**: ~$5-10/month for testing 5. **Later optimization**: Move to self-hosted if needed **Transition to self-hosted when:** 1. Query volume >10K/day 2. Cost exceeds $100/month on API 3. Data compliance requires on-prem 4. Vision models need local GPUs --- ## Next Steps ### Today: Get Started with API Cloud 1. Get NVIDIA API key from build.nvidia.com 2. Test API access 3. Implement NIM text embeddings 4. Re-vectorize 51 DocumentReferences 5. Measure accuracy improvement ### Later: Evaluate Self-Hosting 1. Monitor query volume over time 2. Calculate actual API costs 3. Compare to EC2 GPU costs 4. Make data-driven decision **Bottom line: Use API Cloud now, optimize later!** 🚀

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/isc-tdyar/medical-graphrag-assistant'

If you have feedback or need assistance with the MCP directory API, please join our Discord server