Skip to main content
Glama
create_vector_table.py•1.54 kB
from Utils.get_iris_connection import get_cursor import pandas as pd from sentence_transformers import SentenceTransformer if __name__=="__main__": cursor = get_cursor() sql = """SELECT DocumentReferenceContentAttachmentData, DocumentReferenceSubjectReference FROM VectorSearchApp.DocumentReference""" cursor.execute(sql) out = cursor.fetchall() cols = ["ClinicalNotes", "Patient"] df = pd.DataFrame(out, columns=cols) df["PatientID"] = pd.to_numeric(df["Patient"].astype(str).str.strip("Patient/")) df["NotesDecoded"] = df["ClinicalNotes"].apply(lambda x: bytes.fromhex(x).decode("utf-8", errors="replace")) model = SentenceTransformer('all-MiniLM-L6-v2') # Generate embeddings for all descriptions at once. Batch processing makes it faster embeddings = model.encode(df['NotesDecoded'].tolist(), normalize_embeddings=True) # Add the embeddings to the DataFrame df['Notes_Vector'] = embeddings.tolist() table_name = "VectorSearch.DocRefVectors" create_table_query = f""" CREATE TABLE {table_name} ( PatientID INTEGER, ClinicalNotes LONGVARCHAR, NotesVector VECTOR(DOUBLE, 384) ) """ cursor.execute(create_table_query) insert_query = f"INSERT INTO {table_name} ( PatientID, ClinicalNotes, NotesVector) values (?, ?, TO_VECTOR(?))" df["Notes_Vector_str"] = df["Notes_Vector"].astype(str) rows_list = df[["PatientID", "NotesDecoded", "Notes_Vector_str"]].values.tolist() cursor.executemany(insert_query, rows_list)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/isc-tdyar/medical-graphrag-assistant'

If you have feedback or need assistance with the MCP directory API, please join our Discord server