# Medical GraphRAG Assistant - System Status
**Last Updated**: November 22, 2025
**Version**: v2.12.0
## System Health: ✅ OPERATIONAL
All core systems are functioning and deployed to production.
---
## Production Environment (AWS)
### Infrastructure
- **Status**: ✅ Running
- **Instance**: EC2 g5.xlarge (i-0432eba10b98c4949)
- **Public IP**: 3.84.250.46
- **Region**: us-east-1
- **GPU**: NVIDIA A10G (available)
- **OS**: Ubuntu 24.04 LTS
### InterSystems IRIS Database
- **Status**: ✅ Healthy
- **Container**: iris-vector-db
- **Ports**: 1972 (SQL), 52773 (Management Portal)
- **Namespace**: %SYS (active), SQLUser (tables)
- **Connection**: Remote access working via Python client
**Database Tables:**
| Table | Records | Status | Description |
|-------|---------|--------|-------------|
| SQLUser.ClinicalNoteVectors | 51 | ✅ | FHIR documents with 1024-dim NV-CLIP embeddings |
| VectorSearch.MIMICCXRImages | 50 | ✅ | Medical images with 1024-dim NV-CLIP embeddings |
| SQLUser.Entities | 83 | ✅ | GraphRAG entities (temporal, symptoms, conditions, etc.) |
| SQLUser.EntityRelationships | 540 | ✅ | Entity relationships (CO_OCCURS_WITH) |
| SQLUser.AgentMemoryVectors | ~5 | ✅ | Agent memories with semantic embeddings |
### NVIDIA NIM Services
- **Status**: ✅ Running
- **Service**: NV-CLIP (nvidia/nvclip)
- **Port**: 8002
- **Endpoint**: http://localhost:8002/v1
- **Embeddings**: 1024-dimensional multimodal (text + image)
- **Performance**: ~38 img/sec ingestion, <100ms query
### AWS Bedrock
- **Status**: ✅ Available
- **Model**: Claude Sonnet 4.5 (global.anthropic.claude-sonnet-4-5-20250929-v1:0)
- **API**: Converse API via AWS CLI
- **Authentication**: AWS_PROFILE configured
---
## Local Development Environment
### Streamlit UI
- **Status**: ✅ Running
- **URL**: http://localhost:8501
- **Process**: streamlit run (PID varies)
- **Version**: v2.12.0 with Agent Memory Editor
### SSH Tunnel
- **Status**: ✅ Active
- **Purpose**: Local access to AWS NIM (port 8002)
- **Command**: `ssh -f -N -L 8002:localhost:8002 -i ~/.ssh/medical-graphrag-key.pem ubuntu@3.84.250.46`
- **Note**: Required for local NV-CLIP embeddings
### Python Environment
- **Status**: ✅ Configured
- **Python**: 3.10+
- **Key Packages**:
- intersystems-irispython (IRIS client)
- boto3 (AWS SDK)
- streamlit (UI)
- pydicom (medical imaging)
- mcp SDK
---
## Feature Status
### Core Features ✅
- [x] FHIR document search (full-text + vector)
- [x] GraphRAG knowledge graph (entities + relationships)
- [x] Medical image search (NV-CLIP semantic search)
- [x] Agent memory system (semantic recall)
- [x] Hybrid search with RRF fusion
- [x] Interactive visualizations (charts + networks)
- [x] MCP server with 10+ tools
- [x] Streamlit chat interface
### Recent Fixes (v2.12.0) ✅
- [x] Real NV-CLIP embeddings for images (fixed from mock vectors)
- [x] Real NV-CLIP embeddings for memories (fixed from mock vectors)
- [x] Memory search UI session state persistence
- [x] Empty search string support (browse all memories)
- [x] Type conversion for similarity scores (IRIS string→float)
### Known Limitations
- Medical images: Limited to 50 MIMIC-CXR samples (awaiting full dataset)
- Agent memories: Small dataset (~5 memories currently)
- GraphRAG entities: Extracted from 51 documents only
- IRIS namespace: Using %SYS workaround (DEMO has access restrictions)
---
## Configuration
### Active Config Files
- **AWS Production**: `config/fhir_graphrag_config.aws.yaml`
- **Local Development**: `config/fhir_graphrag_config.yaml`
- **Infrastructure**: `config/aws-config.yaml`
### Environment Variables (Required)
```bash
# AWS
export AWS_PROFILE=122293094970_PowerUserPlusAccess
# IRIS Database
export IRIS_HOST=3.84.250.46
export IRIS_PORT=1972
export IRIS_NAMESPACE=%SYS
export IRIS_USERNAME=_SYSTEM
export IRIS_PASSWORD=***
# NV-CLIP
export NVCLIP_BASE_URL=http://localhost:8002/v1 # via SSH tunnel
```
---
## Performance Metrics
### Query Performance (Measured)
- **Vector search**: 1.038s (30 results)
- **Text search**: 0.018s (23 results with hex decoding)
- **Graph search**: 0.014s (9 entity matches)
- **Full multi-modal**: 0.242s (vector + text + graph fusion)
- **Fast query**: 0.006s (text + graph only, 40x faster)
### Data Scale
- **FHIR documents**: 51 clinical notes vectorized
- **Medical images**: 50 chest X-rays vectorized
- **GraphRAG entities**: 83 entities extracted
- **Relationships**: 540 entity co-occurrences
- **Agent memories**: ~5 semantic memories
- **Total vector records**: ~150
### Resource Utilization (AWS)
- **RAM**: 8.5 GB / 63.7 GB (13% - healthy)
- **GPU**: NVIDIA A10G available
- **Disk**: <1 GB vector data
---
## Testing Status
### Integration Tests ✅
- **Suite**: tests/test_integration.py
- **Results**: 13/13 passing (100%)
- **Coverage**:
- Database schema validation
- FHIR data integrity
- Vector search functionality
- Text search with hex decoding
- Graph entity search
- RRF fusion
- Patient filtering
- Edge case handling
- Performance benchmarks
### Entity Quality ✅
- **Extraction**: 100% high confidence
- **No exceptions**: All tests passed
- **Graceful errors**: Edge cases handled
---
## Deployment History
### Latest Deployment: v2.12.0 (November 22, 2025)
- Agent memory system with pure IRIS vectors
- Medical image search with NV-CLIP
- Memory editor UI in Streamlit sidebar
- Embeddings fixes (real vectors, not mocks)
### Previous Major Releases
- **v2.10.0**: GraphRAG multi-modal search
- **v2.0.0**: AWS deployment with NVIDIA NIM
- **v1.0.0**: Initial FHIR + vector search
---
## Current Priorities
### Immediate (In Progress)
- Documentation review and cleanup ✅ (this session)
- Root directory organization ✅ (completed)
### Short-term (Next)
- Ingest full MIMIC-CXR dataset (377K images)
- Expand agent memory usage in conversations
- Production monitoring and alerting
### Long-term (Planned)
- Enhanced entity extraction with NIM LLM
- Multi-hop reasoning in GraphRAG
- Clinical decision support interface
---
## Troubleshooting Quick Reference
### Common Issues
**1. "NV-CLIP embeddings returning zeros"**
- Check: `NVCLIP_BASE_URL` set correctly
- Verify: SSH tunnel active (port 8002)
- Test: `curl http://localhost:8002/v1/embeddings`
**2. "IRIS connection refused"**
- Check: `IRIS_HOST` and credentials
- Verify: AWS EC2 instance running
- Test: `python -c "from src.db.connection import get_connection; print(get_connection())"`
**3. "Memory search not displaying results"**
- Check: Session state persistence in Streamlit
- Verify: Embeddings magnitude > 0 (not mock)
- Test: Search with empty query (browse all)
**4. "Medical images not found"**
- Check: Image paths relative to project root
- Verify: DICOM files exist in expected location
- Test: `python -c "import os; print(os.path.exists('path/to/image'))"`
---
## Monitoring Commands
### Check Database Health
```bash
python -c "
from src.db.connection import get_connection
conn = get_connection()
cursor = conn.cursor()
cursor.execute('SELECT COUNT(*) FROM VectorSearch.MIMICCXRImages')
print(f'Images: {cursor.fetchone()[0]}')
cursor.execute('SELECT COUNT(*) FROM SQLUser.Entities')
print(f'Entities: {cursor.fetchone()[0]}')
"
```
### Verify Embeddings Quality
```bash
python -c "
from src.db.connection import get_connection
conn = get_connection()
cursor = conn.cursor()
cursor.execute('SELECT TOP 3 ImageID, VECTOR_DOT_PRODUCT(Vector, Vector) as magnitude FROM VectorSearch.MIMICCXRImages')
for row in cursor.fetchall():
status = '✅ REAL' if row[1] > 0 else '❌ MOCK'
print(f'{row[0][:30]}: {row[1]:.4f} {status}')
"
```
### Check Streamlit Process
```bash
ps aux | grep streamlit
# Expected: python -m streamlit run streamlit_app.py --server.port 8501
```
### Test SSH Tunnel
```bash
curl -X POST http://localhost:8002/v1/embeddings \
-H 'Content-Type: application/json' \
-d '{"input": ["test"], "model": "nvidia/nvclip"}'
# Expected: JSON response with 1024-dim embedding
```
---
## Contact & Support
- **Documentation**: See README.md, PROGRESS.md, archive/docs/
- **Troubleshooting**: See docs/troubleshooting.md
- **Architecture**: See docs/architecture.md
- **Deployment**: See docs/deployment-guide.md
**System Status**: All systems operational ✅