Skip to main content
Glama

Inkeep MCP Server

Official
by inkeep
server.py1.72 kB
import typing as T import openai from mcp.server.fastmcp import FastMCP from pydantic import BaseModel from inkeep_mcp_server.settings import inkeep_settings # Initialize FastMCP server mcp = FastMCP("inkeep-mcp-server") # https://docs.anthropic.com/en/docs/build-with-claude/citations#plain-text-documents class InkeepRAGDocument(BaseModel): # anthropic fields citation types type: str source: T.Dict title: T.Optional[str] = None context: T.Optional[str] = None # inkeep specific fields record_type: T.Optional[str] = None url: T.Optional[str] = None class InkeepRAGResponse(BaseModel): content: T.List[InkeepRAGDocument] = [] async def make_inkeep_rag_request(query: str) -> InkeepRAGResponse: async with openai.AsyncOpenAI( base_url=inkeep_settings.INKEEP_API_BASE_URL, api_key=inkeep_settings.INKEEP_API_KEY, ) as openai_client: # https://platform.openai.com/docs/guides/structured-outputs?api-mode=chat inkeep_rag_response = await openai_client.beta.chat.completions.parse( model=inkeep_settings.INKEEP_API_MODEL, messages=[ {"role": "user", "content": query}, ], response_format=InkeepRAGResponse, ) inkeep_rag_response_parsed = inkeep_rag_response.choices[0].message.parsed if inkeep_rag_response_parsed: return inkeep_rag_response_parsed else: return InkeepRAGResponse() @mcp.tool( name=inkeep_settings.INKEEP_MCP_TOOL_NAME, description=inkeep_settings.INKEEP_MCP_TOOL_DESCRIPTION, ) async def retrieve_product_docs(query: str) -> InkeepRAGResponse: return await make_inkeep_rag_request(query)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/inkeep/mcp-server-python'

If you have feedback or need assistance with the MCP directory API, please join our Discord server