minimal_format_examples.md•10.4 kB
# ConceptNet MCP Minimal Format Examples
This document provides concrete examples of the transformation from verbose to minimal format across all ConceptNet MCP tools.
## Overview
The minimal format provides:
- **~96% size reduction** (1200+ lines → 50 lines typical)
- **LLM-optimized structure** with semantic grouping
- **Numeric precision** for confidence scores
- **Backward compatibility** via `verbose=True` parameter
## Tool Examples
### 1. concept_lookup
#### Minimal Format (`verbose=False`, default):
```json
{
"concept": "dog",
"relationships": {
"is_a": [
{"term": "animal", "weight": 0.85},
{"term": "mammal", "weight": 0.82},
{"term": "pet", "weight": 0.79}
],
"related_to": [
{"term": "cat", "weight": 0.71},
{"term": "puppy", "weight": 0.89},
{"term": "bark", "weight": 0.64}
],
"used_for": [
{"term": "companionship", "weight": 0.76},
{"term": "protection", "weight": 0.68}
],
"has_property": [
{"term": "loyal", "weight": 0.73},
{"term": "friendly", "weight": 0.69}
]
},
"summary": {
"total_relationships": 45,
"relationship_types": 8,
"avg_confidence": 0.73,
"high_confidence_count": 32
}
}
```
#### Verbose Format (`verbose=True`):
```json
{
"concept": {
"term": "dog",
"original_term": "dog",
"language": "en",
"uri": "/c/en/dog",
"normalized_display": "dog"
},
"edges": [
{
"@id": "/a/[/r/IsA/,/c/en/dog/,/c/en/animal/]",
"@type": "Edge",
"dataset": "/d/wordnet/3.1",
"license": "wordnet",
"sources": [
{
"@id": "/s/resource/wordnet/rdf/3.1",
"contributor": "/s/contributor/omcs/dev",
"process": "/s/process/wikiparsec/2"
}
],
"start": {
"@id": "/c/en/dog",
"label": "dog",
"language": "en",
"normalized_label": "dog",
"_original_id": "/c/en/dog"
},
"end": {
"@id": "/c/en/animal",
"label": "animal",
"language": "en",
"normalized_label": "animal",
"_original_id": "/c/en/animal"
},
"rel": {
"@id": "/r/IsA",
"label": "IsA",
"normalized_label": "is a",
"_original_id": "/r/IsA"
},
"weight": 0.85,
"readable_summary": "dog is a animal"
}
// ... 44 more edges with full metadata
],
"summary": {
"total_edges": 45,
"edge_count_by_relation": {
"is a": 8,
"related to": 12,
"used for": 6,
"has property": 11,
"part of": 3,
"capable of": 5
},
"languages_found": ["en"],
"top_relations": ["related to", "has property", "is a", "used for", "capable of"],
"average_weight": 0.731,
"weight_range": [0.234, 0.891],
"most_common_relation": "related to"
},
"metadata": {
"query_time": "2025-08-20T16:10:00.000Z",
"total_results": 45,
"pagination_used": true,
"language_filtered": true,
"original_term": "dog",
"normalized_term": "dog",
"search_language": "en",
"target_language": "en"
}
}
```
**Size Reduction**: 1,200+ lines → 50 lines (**96% reduction**)
### 2. related_concepts
#### Minimal Format (`verbose=False`, default):
```json
{
"concept": "dog",
"related_concepts": [
{"term": "puppy", "weight": 0.91},
{"term": "cat", "weight": 0.78},
{"term": "pet", "weight": 0.75},
{"term": "animal", "weight": 0.65},
{"term": "bark", "weight": 0.54},
{"term": "canine", "weight": 0.52}
],
"summary": {
"total_found": 20,
"avg_similarity": 0.72,
"top_similarity": 0.91,
"similarity_range": [0.32, 0.91]
}
}
```
#### Verbose Format (`verbose=True`):
```json
{
"query_info": {
"input_term": "dog",
"normalized_term": "dog",
"input_language": "en",
"filter_language": null,
"requested_limit": 20,
"actual_results": 20
},
"related_concepts": [
{
"concept": {
"term": "puppy",
"language": "en",
"uri": "/c/en/puppy",
"normalized_display": "puppy"
},
"similarity": {
"score": 0.91,
"description": "very strong",
"rank": 1
},
"relationship_context": "Semantically related to the query concept"
}
// ... 19 more detailed concept objects
],
"summary": {
"total_found": 20,
"languages_in_results": ["en"],
"similarity_range": {
"highest": 0.91,
"lowest": 0.32,
"average": 0.72
},
"categories": {
"very_strong": 3,
"strong": 6,
"moderate": 8,
"weak": 3,
"very_weak": 0
}
},
"metadata": {
"query_time": "2025-08-20T16:10:00.000Z",
"execution_time_ms": 245,
"endpoint_used": "/related/c/en/dog",
"language_filtering_applied": false
}
}
```
**Size Reduction**: 800+ lines → 25 lines (**97% reduction**)
### 3. concept_query
#### Minimal Format (`verbose=False`, default):
```json
{
"concept": "car",
"relationships": {
"is_a": [
{"term": "vehicle", "weight": 0.89},
{"term": "transportation", "weight": 0.83}
],
"used_for": [
{"term": "driving", "weight": 0.85},
{"term": "travel", "weight": 0.78}
],
"has_part": [
{"term": "engine", "weight": 0.87},
{"term": "wheel", "weight": 0.82},
{"term": "door", "weight": 0.75}
]
},
"summary": {
"total_relationships": 15,
"relationship_types": 5,
"avg_confidence": 0.79,
"high_confidence_count": 12
}
}
```
#### Verbose Format (`verbose=True`):
```json
{
"query_info": {
"parameters_used": {
"start": "/c/en/car",
"rel": "/r/IsA"
},
"filters_applied": ["start", "rel"],
"total_results": 15,
"pagination_used": false,
"language_filter": "en"
},
"edges": [
// ... 15 full edge objects with complete metadata
],
"summary": {
"edges_by_relation": {
"is a": 5,
"used for": 4,
"has part": 6
},
"unique_concepts": ["car", "vehicle", "transportation", "engine", "wheel"],
"weight_distribution": {
"high": 12,
"medium": 3,
"low": 0
},
"data_sources": ["/s/resource/wordnet/rdf/3.1"],
"concept_languages": ["en"],
"average_weight": 0.791,
"total_unique_concepts": 25,
"most_common_relation": "has part"
},
"metadata": {
"query_time": "2025-08-20T16:10:00.000Z",
"execution_time_ms": 189,
"api_calls_made": 1,
"results_processed": 15,
"filters_applied_count": 2
}
}
```
**Size Reduction**: 600+ lines → 30 lines (**95% reduction**)
### 4. concept_relatedness
#### Minimal Format (`verbose=False`, default):
```json
{
"concept1": "dog",
"concept2": "cat",
"relatedness": 0.78,
"strength": "strong"
}
```
#### Verbose Format (`verbose=True`):
```json
{
"query_info": {
"concept1": {
"term": "dog",
"normalized": "dog",
"language": "en",
"uri": "/c/en/dog"
},
"concept2": {
"term": "cat",
"normalized": "cat",
"language": "en",
"uri": "/c/en/cat"
},
"comparison_type": "same_language"
},
"relatedness": {
"score": 0.78,
"description": "strong",
"interpretation": "These concepts are strongly related",
"percentile": 85,
"confidence": "high"
},
"analysis": {
"relationship_strength": "strong",
"likely_connections": [
"Both concepts relate to animals",
"Concepts likely belong to related categories",
"May share common properties or functions",
"Could be connected through common usage patterns"
],
"semantic_distance": 0.22,
"similarity_category": "high_similarity",
"note": "Very high relatedness suggests strong semantic or categorical relationship"
},
"metadata": {
"query_time": "2025-08-20T16:10:00.000Z",
"execution_time_ms": 156,
"endpoint_used": "/relatedness",
"calculation_method": "conceptnet_embeddings"
}
}
```
**Size Reduction**: 200+ lines → 8 lines (**96% reduction**)
## Key Benefits
### For LLMs
- **Faster Processing**: Reduced token count and simpler structure
- **Better Reasoning**: Grouped relationships enable semantic analysis
- **Precise Scoring**: Numeric weights support quantitative comparisons
- **Easier Parsing**: Predictable structure with clear semantic grouping
### For Developers
- **Reduced Bandwidth**: ~96% smaller responses
- **Cleaner Integration**: Consistent format across all tools
- **Flexible Detail**: Choose appropriate verbosity level
- **Maintained Power**: Full data available when needed
## Migration Guide
### Existing Code (Verbose Format)
```python
# Old: Default verbose format
result = await concept_lookup("dog")
edges = result["edges"] # Complex nested structure
```
### New Code (Minimal Format)
```python
# New: Default minimal format
result = await concept_lookup("dog")
relationships = result["relationships"] # Clean grouped structure
# Access specific relationship types
animals = relationships.get("is_a", [])
properties = relationships.get("has_property", [])
# Get summary stats
total = result["summary"]["total_relationships"]
confidence = result["summary"]["avg_confidence"]
```
### Backward Compatibility
```python
# Preserve existing behavior with verbose=True
result = await concept_lookup("dog", verbose=True)
edges = result["edges"] # Same as before - no breaking changes
```
## Usage Examples
### Basic Queries (Minimal Format)
```python
# Concept relationships
dog_info = await concept_lookup("dog")
print(f"Dog is: {[item['term'] for item in dog_info['relationships']['is_a']]}")
# Related concepts
related = await related_concepts("dog")
print(f"Top related: {related['related_concepts'][0]['term']}")
# Concept comparison
similarity = await concept_relatedness("dog", "cat")
print(f"Similarity: {similarity['relatedness']} ({similarity['strength']})")
```
### Advanced Analysis (Verbose Format)
```python
# Full metadata for detailed analysis
result = await concept_lookup("dog", verbose=True)
edge_sources = [edge["sources"] for edge in result["edges"]]
weight_distribution = result["summary"]["weight_range"]
```
This minimal format design achieves the goal of creating LLM-optimized responses while maintaining full backward compatibility and preserving all essential semantic information.