Skip to main content
Glama

LMStudio-MCP

DEPLOYMENT.md5.78 kB
# Comprehensive Deployment Options LMStudio-MCP supports multiple deployment methods to suit different environments and preferences. This document outlines all available deployment options. ## Quick Reference | Method | Best For | Complexity | Requirements | |--------|----------|------------|--------------| | **Direct Python** | Development, Testing | Low | Python 3.7+ | | **UVX (Recommended)** | Most Users | Low | Python/Node.js | | **Pip Install** | Python Developers | Low | Python 3.7+ | | **Docker** | Containers, Production | Medium | Docker | | **Docker Compose** | Local Development | Medium | Docker + Compose | | **Kubernetes** | Enterprise, Scale | High | K8s Cluster | ## Method 1: UVX (Recommended) UVX is the simplest way to get started: ```bash # Install and run directly from GitHub uvx https://github.com/infinitimeless/LMStudio-MCP # Claude MCP Configuration { "lmstudio-mcp": { "command": "uvx", "args": ["https://github.com/infinitimeless/LMStudio-MCP"] } } ``` ## Method 2: Direct Python Installation For development or when you want to modify the code: ```bash # Clone and setup git clone https://github.com/infinitimeless/LMStudio-MCP.git cd LMStudio-MCP pip install -r requirements.txt # Run python lmstudio_bridge.py # Claude MCP Configuration { "lmstudio-mcp": { "command": "/bin/bash", "args": ["-c", "cd /path/to/LMStudio-MCP && python lmstudio_bridge.py"] } } ``` ## Method 3: Pip Installation Install as a Python package: ```bash # Install from GitHub pip install git+https://github.com/infinitimeless/LMStudio-MCP.git # Or install locally pip install . # Run lmstudio-mcp # Claude MCP Configuration { "lmstudio-mcp": { "command": "lmstudio-mcp", "args": [] } } ``` ## Method 4: Docker See [DOCKER.md](DOCKER.md) for comprehensive Docker deployment guide. ### Quick Docker Start ```bash # Build and run docker build -t lmstudio-mcp . docker run -it --network host lmstudio-mcp # Or use pre-built image docker run -it --network host ghcr.io/infinitimeless/lmstudio-mcp:latest # Claude MCP Configuration { "lmstudio-mcp-docker": { "command": "docker", "args": ["run", "-i", "--rm", "--network=host", "lmstudio-mcp"] } } ``` ## Method 5: Docker Compose ```bash # Start with compose docker-compose up -d # View logs docker-compose logs -f lmstudio-mcp # Claude MCP Configuration { "lmstudio-mcp-compose": { "command": "docker-compose", "args": ["run", "--rm", "lmstudio-mcp"] } } ``` ## Method 6: Kubernetes For enterprise or scaled deployments: ```bash # Apply manifests kubectl apply -f k8s/ # Check status kubectl get pods -l app=lmstudio-mcp ``` ## Method 7: Automated Installation Script Use the provided installation script: ```bash # Download and run installer curl -fsSL https://raw.githubusercontent.com/infinitimeless/LMStudio-MCP/main/install.sh | bash # Or download first wget https://raw.githubusercontent.com/infinitimeless/LMStudio-MCP/main/install.sh chmod +x install.sh ./install.sh ``` The installer will: - Detect your environment - Install dependencies - Set up the bridge - Generate MCP configuration - Provide next steps ## Environment Variables All deployment methods support these environment variables: | Variable | Default | Description | |----------|---------|-------------| | `LMSTUDIO_API_BASE` | `http://localhost:1234/v1` | LM Studio API endpoint | | `LOG_LEVEL` | `INFO` | Logging level (DEBUG, INFO, WARNING, ERROR) | | `TIMEOUT` | `30` | Request timeout in seconds | Example: ```bash LMSTUDIO_API_BASE=http://127.0.0.1:1234/v1 python lmstudio_bridge.py ``` ## Troubleshooting ### Common Issues 1. **Connection refused**: Ensure LM Studio is running with a model loaded 2. **404 errors**: Try using `127.0.0.1` instead of `localhost` 3. **Permission denied**: Check file permissions and Docker access 4. **Module not found**: Ensure all dependencies are installed ### Platform-Specific Notes #### macOS - Use `localhost` or `127.0.0.1` for LM Studio URL - Docker Desktop may require host networking configuration #### Windows - Use Docker Desktop with WSL2 backend - Path separators in configuration should use forward slashes #### Linux - Docker may require `sudo` or adding user to docker group - Ensure LM Studio is accessible on the network interface ## Performance Optimization ### Resource Requirements | Deployment | RAM | CPU | Disk | |------------|-----|-----|------| | Python Direct | ~50MB | Low | Minimal | | Docker | ~100MB | Low | ~200MB | | Kubernetes | ~150MB | Low | ~300MB | ### Optimization Tips 1. **Use lightweight base images** (already implemented in Dockerfile) 2. **Enable Docker BuildKit** for faster builds 3. **Use multi-stage builds** for smaller images 4. **Configure resource limits** in production 5. **Use persistent volumes** for logs in container environments ## Security Considerations ### Network Security - Bridge requires access to LM Studio on localhost:1234 - Consider firewall rules for container deployments - Use network policies in Kubernetes ### Container Security - Runs as non-root user by default - Minimal attack surface with slim base image - No sensitive data stored in container ### Authentication - No authentication required between bridge and LM Studio - Claude MCP connection is handled by Claude's MCP framework ## Next Steps 1. Choose your preferred deployment method 2. Ensure LM Studio is running with a model loaded 3. Configure Claude MCP settings 4. Test the connection with a simple prompt 5. Explore advanced features and customization For detailed troubleshooting, see [TROUBLESHOOTING.md](TROUBLESHOOTING.md). For Docker-specific guidance, see [DOCKER.md](DOCKER.md). For contributing, see [CONTRIBUTING.md](CONTRIBUTING.md).

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/infinitimeless/LMStudio-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server