scope.md•9.38 kB
# Wikipedia MCP Server - Project Scope
## Overview
This project will create a **Wikipedia MCP Server** - a local Model Context Protocol server that provides Claude with real-time access to Wikipedia data through a standardized set of tools. The server will implement the MCP specification to enable seamless integration with Claude Desktop and other MCP-compatible clients.
## Project Goals
### Primary Objective
Build a production-ready MCP server that acts as a bridge between Claude and Wikipedia, allowing:
- Live Wikipedia content retrieval
- Intelligent article search and discovery
- Structured data access from Wikipedia
- Real-time content summarization
### Key Benefits
- **Real-time Data**: Access to current Wikipedia content (not training data cutoff)
- **Structured Access**: Well-defined tools for specific Wikipedia operations
- **Local Control**: Self-hosted server with no external API keys required
- **Extensible**: Foundation for additional Wikipedia-related features
## Technical Architecture
### MCP Implementation Details
**Server Type**: Local MCP Server using Python SDK
**Transport**: Standard I/O (stdio) for Claude Desktop integration
**Protocol Version**: Latest MCP specification (2024)
### Core Components
1. **MCP Server Framework**
- Python-based using `@modelcontextprotocol/python-sdk`
- FastMCP for rapid development and built-in features
- Stdio transport for Claude Desktop compatibility
2. **Wikipedia Integration**
- Wikipedia API client for content retrieval
- Caching layer for performance optimization
- Rate limiting and error handling
3. **Tool Architecture**
- Structured tool definitions with JSON schemas
- Type-safe input/output validation
- Comprehensive error handling
## Functional Requirements
### Core Tools (Phase 1)
#### 1. `search_wikipedia`
```python
@mcp.tool()
def search_wikipedia(
query: str,
limit: int = 10,
language: str = "en"
) -> WikipediaSearchResult:
"""Search Wikipedia articles by query terms"""
```
**Input Schema:**
- `query` (required): Search terms
- `limit` (optional): Number of results (default: 10, max: 50)
- `language` (optional): Wikipedia language code (default: "en")
**Output:** List of article titles, URLs, and brief descriptions
#### 2. `get_article`
```python
@mcp.tool()
def get_article(
title: str,
language: str = "en",
sections: list[str] | None = None
) -> WikipediaArticle:
"""Retrieve full Wikipedia article content"""
```
**Input Schema:**
- `title` (required): Article title or page ID
- `language` (optional): Wikipedia language code
- `sections` (optional): Specific sections to retrieve
**Output:** Structured article data with content, metadata, and references
#### 3. `get_summary`
```python
@mcp.tool()
def get_summary(
title: str,
language: str = "en",
sentences: int = 3
) -> WikipediaSummary:
"""Get concise article summary"""
```
**Input Schema:**
- `title` (required): Article title
- `language` (optional): Wikipedia language code
- `sentences` (optional): Number of summary sentences
**Output:** Article summary with key facts and metadata
#### 4. `search_related`
```python
@mcp.tool()
def search_related(
title: str,
language: str = "en",
limit: int = 10
) -> RelatedArticles:
"""Find articles related to a given article"""
```
**Input Schema:**
- `title` (required): Base article title
- `language` (optional): Wikipedia language code
- `limit` (optional): Number of related articles
**Output:** List of related articles with relevance scores
### Enhanced Features (Phase 2)
#### 5. `get_categories`
```python
@mcp.tool()
def get_categories(
title: str,
language: str = "en"
) -> ArticleCategories:
"""Get Wikipedia categories for an article"""
```
#### 6. `search_by_category`
```python
@mcp.tool()
def search_by_category(
category: str,
language: str = "en",
limit: int = 20
) -> CategoryArticles:
"""Find articles in a specific category"""
```
#### 7. `get_page_info`
```python
@mcp.tool()
def get_page_info(
title: str,
language: str = "en"
) -> PageMetadata:
"""Get article metadata and statistics"""
```
## Data Models
### Structured Output Types
```python
class WikipediaSearchResult(BaseModel):
articles: list[SearchResult]
total_found: int
language: str
class SearchResult(BaseModel):
title: str
url: str
description: str
page_id: int
class WikipediaArticle(BaseModel):
title: str
content: str
sections: dict[str, str]
url: str
last_modified: datetime
page_id: int
language: str
categories: list[str]
references: list[str]
class WikipediaSummary(BaseModel):
title: str
summary: str
url: str
language: str
page_id: int
key_facts: list[str]
```
## Technical Requirements
### Dependencies
- **Core**: `mcp` Python SDK, `httpx` for HTTP requests
- **Wikipedia API**: Custom client using Wikipedia REST API v1
- **Data Processing**: `pydantic` for data validation, `beautifulsoup4` for HTML parsing
- **Performance**: `asyncio` for async operations, local caching
### Performance Targets
- **Response Time**: < 2 seconds for most operations
- **Caching**: 5-minute cache for article content, 1-hour cache for search results
- **Rate Limiting**: Respect Wikipedia's rate limits (max 100 requests/minute)
- **Concurrent Requests**: Support up to 5 concurrent Wikipedia API calls
### Error Handling
- Graceful handling of Wikipedia API errors
- Network timeout and retry logic
- Invalid article title handling
- Language not supported fallbacks
## Installation & Configuration
### Claude Desktop Integration
```json
{
"mcpServers": {
"wikipedia": {
"command": "uv",
"args": [
"run",
"--directory",
"/path/to/wikipedia-mcp",
"wikipedia_mcp_server.py"
]
}
}
}
```
### Environment Configuration
```python
# Optional environment variables
WIKIPEDIA_DEFAULT_LANGUAGE=en
WIKIPEDIA_CACHE_TTL=300
WIKIPEDIA_MAX_CONCURRENT=5
WIKIPEDIA_RATE_LIMIT=100
```
## Development Phases
### Phase 1: Core Implementation (Week 1)
- [ ] Set up MCP server foundation using FastMCP
- [ ] Implement basic Wikipedia API client
- [ ] Create core tools: `search_wikipedia`, `get_article`, `get_summary`, `search_related`
- [ ] Add structured output models
- [ ] Basic error handling and validation
### Phase 2: Enhanced Features (Week 2)
- [ ] Add caching layer with TTL
- [ ] Implement rate limiting
- [ ] Add category-based tools
- [ ] Enhanced error handling and logging
- [ ] Performance optimization
### Phase 3: Production Ready (Week 3)
- [ ] Comprehensive testing suite
- [ ] Documentation and usage examples
- [ ] Claude Desktop integration guide
- [ ] Performance monitoring
- [ ] Optional: Multiple language support
## Success Criteria
### Functional Success
- ✅ All core tools working reliably
- ✅ Structured output with proper schemas
- ✅ Integration with Claude Desktop
- ✅ Real-time Wikipedia data access
### Performance Success
- ✅ Sub-2-second response times for 90% of requests
- ✅ Proper rate limiting and caching
- ✅ Graceful error handling
- ✅ No Wikipedia API abuse
### Usability Success
- ✅ Clear tool descriptions and schemas
- ✅ Intuitive search and retrieval workflows
- ✅ Comprehensive article access
- ✅ Related content discovery
## Future Enhancements
### Potential Extensions
- **Multi-language Support**: Automatic language detection and translation
- **Image Access**: Wikipedia media and image retrieval
- **Citation Tracking**: Enhanced reference and citation tools
- **Personalization**: User preference-based content filtering
- **Wikidata Integration**: Access to structured knowledge base
- **Historical Data**: Access to article revision history
### Advanced Features
- **Semantic Search**: AI-powered content discovery
- **Content Analysis**: Automatic fact extraction and summarization
- **Cross-reference**: Link analysis between articles
- **Export Tools**: PDF/markdown generation from Wikipedia content
## Constraints & Considerations
### Technical Constraints
- Must comply with Wikipedia's Terms of Use and API guidelines
- Rate limiting required to be a good citizen of Wikipedia infrastructure
- No modification or redistribution of Wikipedia content
- Respect for Wikipedia's server resources
### Operational Constraints
- Local-only server (no cloud deployment in scope)
- Stdio transport only (no HTTP server)
- Python-only implementation
- Compatible with latest Claude Desktop versions
### Licensing & Legal
- Comply with Wikipedia's CC BY-SA 3.0 license
- Proper attribution for Wikipedia content
- No commercial use restrictions
- Open source development approach
---
## Next Steps
1. **Review and Approve Scope**: Validate requirements and technical approach
2. **Environment Setup**: Prepare development environment with Python and MCP SDK
3. **Initial Implementation**: Begin with basic MCP server and Wikipedia API client
4. **Core Tools Development**: Implement the four primary tools with structured output
5. **Testing & Integration**: Validate with Claude Desktop and refine based on usage
This scope provides a comprehensive foundation for building a production-ready Wikipedia MCP Server that enhances Claude's capabilities with real-time Wikipedia access.