Skip to main content
Glama

MCP Knowledge Base Server

by ikungsjl

MCP 知识库服务器

这是一个基于 Model Context Protocol (MCP) 的知识库服务器,可以处理本地文档并根据文档内容回答问题。

功能特性

  • 支持多种文档格式:PDF、DOCX、TXT、HTML
  • 自动文档索引和搜索
  • 基于相似度的文档检索
  • 完整的 MCP 协议支持
  • 中文文档处理支持

ModelScope MCP 服务配置

{ "name": "mcp-knowledge-base", "version": "1.0.0", "description": "基于本地文档的知识库问答MCP服务器", "author": "yjy", "license": "MIT", "repository": { "type": "git", "url": "https://github.com/ikungsjl/mcp-knowledge-base.git" }, "keywords": ["mcp", "knowledge-base", "document-processing", "qa"], "main": "dist/index.js", "type": "module", "scripts": { "build": "tsc", "start": "node dist/index.js", "dev": "tsx src/index.ts" }, "dependencies": { "@modelcontextprotocol/sdk": "^0.4.0", "pdf-parse": "^1.1.1", "mammoth": "^1.6.0", "cheerio": "^1.0.0-rc.12", "natural": "^6.10.4", "fs-extra": "^11.2.0", "glob": "^10.3.10" }, "devDependencies": { "@types/node": "^20.10.0", "@types/fs-extra": "^11.0.4", "@types/natural": "^5.1.5", "@types/pdf-parse": "^1.1.4", "typescript": "^5.3.0", "tsx": "^4.6.0" }, "mcp": { "server": { "command": "node", "args": ["dist/index.js"], "env": {} }, "tools": [ { "name": "add_document", "description": "添加单个文档到知识库", "inputSchema": { "type": "object", "properties": { "file_path": { "type": "string", "description": "文档文件路径" } }, "required": ["file_path"] } }, { "name": "add_directory", "description": "添加目录中的所有文档到知识库", "inputSchema": { "type": "object", "properties": { "directory_path": { "type": "string", "description": "目录路径" } }, "required": ["directory_path"] } }, { "name": "query_knowledge_base", "description": "查询知识库", "inputSchema": { "type": "object", "properties": { "question": { "type": "string", "description": "查询问题" }, "max_results": { "type": "number", "description": "最大返回结果数", "default": 5 }, "threshold": { "type": "number", "description": "相似度阈值", "default": 0.1 } }, "required": ["question"] } }, { "name": "list_documents", "description": "列出知识库中的所有文档", "inputSchema": { "type": "object", "properties": {} } }, { "name": "get_document", "description": "获取特定文档信息", "inputSchema": { "type": "object", "properties": { "document_id": { "type": "string", "description": "文档ID" } }, "required": ["document_id"] } }, { "name": "remove_document", "description": "从知识库中移除文档", "inputSchema": { "type": "object", "properties": { "document_id": { "type": "string", "description": "文档ID" } }, "required": ["document_id"] } }, { "name": "clear_knowledge_base", "description": "清空知识库", "inputSchema": { "type": "object", "properties": {} } }, { "name": "get_stats", "description": "获取知识库统计信息", "inputSchema": { "type": "object", "properties": {} } } ] } }

安装

  1. 克隆项目并安装依赖:
npm install
  1. 构建项目:
npm run build

使用方法

1. 启动服务器

npm start

2. 在 MCP 客户端中配置

在你的 MCP 客户端配置文件中添加:

{ "mcpServers": { "knowledge-base": { "command": "node", "args": ["dist/index.js"], "env": {} } } }

3. 可用的工具

添加文档
  • add_document: 添加单个文档到知识库
  • add_directory: 添加目录中的所有文档到知识库
查询知识库
  • query_knowledge_base: 查询知识库并获取答案
管理文档
  • list_documents: 列出所有文档
  • get_document: 获取特定文档信息
  • remove_document: 移除文档
  • clear_knowledge_base: 清空知识库
  • get_stats: 获取统计信息

配置

服务器会自动创建以下目录:

  • documents/: 存储文档文件
  • index/: 存储索引数据

开发

# 开发模式 npm run dev # 测试 npm test

项目结构

src/ ├── types.ts # 类型定义 ├── document-processor.ts # 文档处理器 ├── knowledge-base.ts # 知识库核心 ├── mcp-server.ts # MCP 服务器 └── index.ts # 入口文件

许可证

MIT

-
security - not tested
F
license - not found
-
quality - not tested

local-only server

The server can only run on the client's local machine because it depends on local resources.

A local document processing server that can index various document formats (PDF, DOCX, TXT, HTML) and answer questions based on their content using the Model Context Protocol.

  1. 功能特性
    1. ModelScope MCP 服务配置
      1. 安装
        1. 使用方法
          1. 启动服务器
          2. 在 MCP 客户端中配置
          3. 可用的工具
        2. 配置
          1. 开发
            1. 项目结构
              1. 许可证

                Related MCP Servers

                • A
                  security
                  A
                  license
                  A
                  quality
                  A server providing tools to read, write, and edit Microsoft Word (docx) files through the Model Context Protocol, allowing operations like complete document reading, content creation, targeted paragraph editing, and text insertion.
                  Last updated -
                  4
                  10
                  Python
                  MIT License
                • -
                  security
                  A
                  license
                  -
                  quality
                  A server that provides document processing capabilities using the Model Context Protocol, allowing conversion of documents to markdown, extraction of tables, and processing of document images.
                  Last updated -
                  6
                  Python
                  MIT License
                  • Linux
                  • Apple
                • -
                  security
                  -
                  license
                  -
                  quality
                  A TypeScript-based document processing server that supports various document formats (.docx, .pdf, .xlsx) and integrates with Model Context Protocol SDK for efficient document context management.
                  Last updated -
                  TypeScript
                  MIT License
                • -
                  security
                  F
                  license
                  -
                  quality
                  A Model Context Protocol server for ingesting, chunking and semantically searching documentation files, with support for markdown, Python, OpenAPI, HTML files and URLs.
                  Last updated -
                  Python
                  • Apple

                View all related MCP servers

                MCP directory API

                We provide all the information about MCP servers via our MCP API.

                curl -X GET 'https://glama.ai/api/mcp/v1/servers/ikungsjl/mcp-knowledge-base'

                If you have feedback or need assistance with the MCP directory API, please join our Discord server