Skip to main content
Glama
photoAnalyzer.ts1.4 kB
import fetch from "node-fetch"; import * as cheerio from "cheerio"; export async function extractListingPhotos(listingId: string) { try { const url = `https://www.airbnb.com/rooms/${listingId}`; const response = await fetch(url, { headers: { 'User-Agent': 'Mozilla/5.0' }, }); if (!response.ok) throw new Error(`HTTP ${response.status}`); const html = await response.text(); const $ = cheerio.load(html); const photoUrls: string[] = []; $('img[src*="airbnb"]').each((_: any, el: any) => { const src = $(el).attr('src'); const alt = $(el).attr('alt'); if (src && alt?.includes('photo') && photoUrls.length < 50) { if (!photoUrls.includes(src)) photoUrls.push(src); } }); return { listingId, photoUrls, photoCount: photoUrls.length, extractionSuccess: photoUrls.length > 0, timestamp: new Date().toISOString(), }; } catch (error) { return { listingId, photoUrls: [], photoCount: 0, extractionSuccess: false, error: (error instanceof Error ? error.message : 'Unknown error'), timestamp: new Date().toISOString(), }; } } export function formatPhotosForAnalysis(photos: any) { const photoList = photos.photoUrls.map((url: string, i: number) => `Photo ${i + 1}: ${url}`).join('\n'); return `Listing ${photos.listingId}\n${photoList}`; }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/iclickfreedownloads/mcp-server-airbnb'

If you have feedback or need assistance with the MCP directory API, please join our Discord server