Skip to main content
Glama

Tavily Web Search MCP Server

by iKwesi
visualize_graph.pyβ€’2.23 kB
""" LangGraph Workflow Visualization Generates a PNG diagram of the Adaptive MCP Assistant workflow. """ import asyncio from langgraph_app import create_research_agent async def generate_graph_visualization(): """ Generate PNG visualization of the LangGraph workflow. Saves the diagram to langgraph_app/workflow_diagram.png """ print("🎨 Generating LangGraph workflow visualization...") try: # Create the agent to get the compiled graph async with create_research_agent() as agent: print("βœ… Agent created successfully") # Generate Mermaid PNG try: png_data = agent.get_graph().draw_mermaid_png() # Save to file output_path = "langgraph_app/workflow_diagram.png" with open(output_path, "wb") as f: f.write(png_data) print(f"βœ… Graph visualization saved to: {output_path}") print("\nYou can now:") print(" 1. Open the PNG file to view the diagram") print(" 2. Add it to your README") print(" 3. Use it in presentations") except Exception as e: print(f"⚠️ PNG generation failed: {str(e)}") print("Note: PNG generation requires graphviz to be installed") print("Install with: brew install graphviz") # Fallback: Generate Mermaid text print("\nπŸ“ Generating Mermaid diagram instead...") mermaid = agent.get_graph().draw_mermaid() output_path = "langgraph_app/workflow_diagram.mmd" with open(output_path, "w") as f: f.write(mermaid) print(f"βœ… Mermaid diagram saved to: {output_path}") print("You can paste this into GitHub README or mermaid.live") except Exception as e: print(f"❌ Error: {str(e)}") import traceback traceback.print_exc() if __name__ == "__main__": asyncio.run(generate_graph_visualization())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/iKwesi/AIE8-MCP-Session'

If you have feedback or need assistance with the MCP directory API, please join our Discord server