mcp_server.py•10.5 kB
import logging
import json
from typing import Optional, List, Any
import concurrent.futures
import atexit
import clickhouse_connect
from clickhouse_connect.driver.binding import format_query_value
from dotenv import load_dotenv
from fastmcp import FastMCP
from fastmcp.exceptions import ToolError
from dataclasses import dataclass, field, asdict, is_dataclass
from starlette.requests import Request
from starlette.responses import PlainTextResponse
from mcp_hydrolix.mcp_env import get_config
@dataclass
class Column:
database: str
table: str
name: str
column_type: str
default_kind: Optional[str]
default_expression: Optional[str]
comment: Optional[str]
@dataclass
class Table:
database: str
name: str
engine: str
create_table_query: str
dependencies_database: str
dependencies_table: str
engine_full: str
sorting_key: str
primary_key: str
total_rows: int
total_bytes: int
total_bytes_uncompressed: int
parts: int
active_parts: int
total_marks: int
comment: Optional[str] = None
columns: List[Column] = field(default_factory=list)
MCP_SERVER_NAME = "mcp-hydrolix"
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(MCP_SERVER_NAME)
QUERY_EXECUTOR = concurrent.futures.ThreadPoolExecutor(max_workers=10)
atexit.register(lambda: QUERY_EXECUTOR.shutdown(wait=True))
SELECT_QUERY_TIMEOUT_SECS = 30
load_dotenv()
mcp = FastMCP(
name=MCP_SERVER_NAME,
dependencies=[
"clickhouse-connect",
"python-dotenv",
"pip-system-certs",
],
)
@mcp.custom_route("/health", methods=["GET"])
async def health_check(request: Request) -> PlainTextResponse:
"""Health check endpoint for monitoring server status.
Returns OK if the server is running and can connect to Hydrolix.
"""
try:
# Try to create a client connection to verify query-head connectivity
client = create_hydrolix_client()
version = client.server_version
return PlainTextResponse(f"OK - Connected to Hydrolix compatible with ClickHouse {version}")
except Exception as e:
# Return 503 Service Unavailable if we can't connect to Hydrolix
return PlainTextResponse(f"ERROR - Cannot connect to Hydrolix: {str(e)}", status_code=503)
def result_to_table(query_columns, result) -> List[Table]:
return [Table(**dict(zip(query_columns, row))) for row in result]
def result_to_column(query_columns, result) -> List[Column]:
return [Column(**dict(zip(query_columns, row))) for row in result]
def to_json(obj: Any) -> str:
if is_dataclass(obj):
return json.dumps(asdict(obj), default=to_json)
elif isinstance(obj, list):
return [to_json(item) for item in obj]
elif isinstance(obj, dict):
return {key: to_json(value) for key, value in obj.items()}
return obj
@mcp.tool()
def list_databases():
"""List available Hydrolix databases"""
logger.info("Listing all databases")
client = create_hydrolix_client()
result = client.command("SHOW DATABASES")
# Convert newline-separated string to list and trim whitespace
if isinstance(result, str):
databases = [db.strip() for db in result.strip().split("\n")]
else:
databases = [result]
logger.info(f"Found {len(databases)} databases")
return json.dumps(databases)
@mcp.tool()
def list_tables(database: str, like: Optional[str] = None, not_like: Optional[str] = None):
"""List available Hydrolix tables in a database, including schema, comment,
row count, and column count."""
logger.info(f"Listing tables in database '{database}'")
client = create_hydrolix_client()
query = f"SELECT database, name, engine, create_table_query, dependencies_database, dependencies_table, engine_full, sorting_key, primary_key, total_rows, total_bytes, total_bytes_uncompressed, parts, active_parts, total_marks, comment FROM system.tables WHERE database = {format_query_value(database)}"
if like:
query += f" AND name LIKE {format_query_value(like)}"
if not_like:
query += f" AND name NOT LIKE {format_query_value(not_like)}"
result = client.query(query)
# Deserialize result as Table dataclass instances
tables = result_to_table(result.column_names, result.result_rows)
for table in tables:
column_data_query = f"SELECT database, table, name, type AS column_type, default_kind, default_expression, comment FROM system.columns WHERE database = {format_query_value(database)} AND table = {format_query_value(table.name)}"
column_data_query_result = client.query(column_data_query)
table.columns = [
c
for c in result_to_column(
column_data_query_result.column_names,
column_data_query_result.result_rows,
)
]
logger.info(f"Found {len(tables)} tables")
return [asdict(table) for table in tables]
def execute_query(query: str):
client = create_hydrolix_client()
try:
res = client.query(
query,
settings={
"readonly": 1,
"hdx_query_max_execution_time": SELECT_QUERY_TIMEOUT_SECS,
"hdx_query_max_attempts": 1,
"hdx_query_max_result_rows": 100_000,
"hdx_query_max_memory_usage": 2 * 1024 * 1024 * 1024, # 2GiB
"hdx_query_admin_comment": f"User: {MCP_SERVER_NAME}",
},
)
logger.info(f"Query returned {len(res.result_rows)} rows")
return {"columns": res.column_names, "rows": res.result_rows}
except Exception as err:
logger.error(f"Error executing query: {err}")
raise ToolError(f"Query execution failed: {str(err)}")
@mcp.tool()
def run_select_query(query: str):
"""Run a SELECT query in a Hydrolix time-series database using the Clickhouse SQL dialect.
Queries run using this tool will timeout after 30 seconds.
The primary key on tables queried this way is always a timestamp. Queries should include either
a LIMIT clause or a filter based on the primary key as a performance guard to ensure they return
in a reasonable amount of time. Queries should select specific fields and avoid the use of
SELECT * to avoid performance issues. The performance guard used for the query should be clearly
communicated with the user, and the user should be informed that the query may take a long time
to run if the performance guard is not used. When choosing a performance guard, the user's
preference should be requested and used if available. When using aggregations, the performance
guard should take form of a primary key filter, or else the LIMIT should be applied in a
subquery before applying the aggregations.
When matching columns based on substrings, prefix or suffix matches should be used instead of
full-text search whenever possible. When searching for substrings, the syntax `column LIKE
'%suffix'` or `column LIKE 'prefix%'` should be used.
Example query. Purpose: get logs from the `application.logs` table. Primary key: `timestamp`.
Performance guard: 10 minute recency filter.
`SELECT message, timestamp FROM application.logs WHERE timestamp > now() - INTERVAL 10 MINUTES`
Example query. Purpose: get the median humidity from the `weather.measurements` table. Primary
key: `date`. Performance guard: 1000 row limit, applied before aggregation.
`SELECT median(humidity) FROM (SELECT humidity FROM weather.measurements LIMIT 1000)`
Example query. Purpose: get the lowest temperature from the `weather.measurements` table over
the last 10 years. Primary key: `date`. Performance guard: date range filter.
`SELECT min(temperature) FROM weather.measurements WHERE date > now() - INTERVAL 10 YEARS`
Example query. Purpose: get the app name with the most log messages from the `application.logs`
table in the window between new year and valentine's day of 2024. Primary key: `timestamp`.
Performance guard: date range filter.
`SELECT app, count(*) FROM application.logs WHERE timestamp > '2024-01-01' AND timestamp < '2024-02-14' GROUP BY app ORDER BY count(*) DESC LIMIT 1`
"""
logger.info(f"Executing SELECT query: {query}")
try:
future = QUERY_EXECUTOR.submit(execute_query, query)
try:
result = future.result(timeout=SELECT_QUERY_TIMEOUT_SECS)
# Check if we received an error structure from execute_query
if isinstance(result, dict) and "error" in result:
logger.warning(f"Query failed: {result['error']}")
# MCP requires structured responses; string error messages can cause
# serialization issues leading to BrokenResourceError
return {
"status": "error",
"message": f"Query failed: {result['error']}",
}
return result
except concurrent.futures.TimeoutError:
logger.warning(f"Query timed out after {SELECT_QUERY_TIMEOUT_SECS} seconds: {query}")
future.cancel()
raise ToolError(f"Query timed out after {SELECT_QUERY_TIMEOUT_SECS} seconds")
except ToolError:
raise
except Exception as e:
logger.error(f"Unexpected error in run_select_query: {str(e)}")
raise RuntimeError(f"Unexpected error during query execution: {str(e)}")
def create_hydrolix_client():
client_config = get_config().get_client_config()
auth_info = (
f"as {client_config['username']}"
if "username" in client_config
else "using service account token"
)
logger.info(
f"Creating Hydrolix client connection to {client_config['host']}:{client_config['port']} "
f"{auth_info} "
f"(secure={client_config['secure']}, verify={client_config['verify']}, "
f"connect_timeout={client_config['connect_timeout']}s, "
f"send_receive_timeout={client_config['send_receive_timeout']}s)"
)
try:
client = clickhouse_connect.get_client(**client_config)
# Test the connection
version = client.server_version
logger.info(f"Successfully connected to Hydrolix compatible with ClickHouse {version}")
return client
except Exception as e:
logger.error(f"Failed to connect to Hydrolix: {str(e)}")
raise