Skip to main content
Glama
case-study-01-derivative-content.mdβ€’13.2 kB
# HUMMBL Case Study #1 - Derivative Content Package ## 1. X/Twitter Thread (10 posts) ### Post 1 (Hook) I built a 120-model mental models framework using... the framework itself. Meta-recursive product development. Here's what 18 months of framework-driven building taught me: πŸ§΅πŸ‘‡ ### Post 2 (Problem) Started with a mess: - Mental models scattered across notes - No validation methodology - Zero production infrastructure - Solo founder, full-time job, multiple clients Wickedness score: 19/30 (Tier 4 problem) ### Post 3 (Architecture) First breakthrough: 6 transformations, not random categories. P - Perspective IN - Inversion CO - Composition DE - Decomposition RE - Recursion SY - Systems Everything maps to these 6. Always. ### Post 4 (Scaling) Second breakthrough: Base-N scaling. Base6 = 6 models (core literacy) Base42 = 42 models (wicked problems) Base120 = 120 models (pedagogical ceiling) Match complexity to problem tier. Don't over-engineer. ### Post 5 (Validation) Third breakthrough: Quantitative wickedness scoring. 5 questions, 0-30 points: - Variables - Stakeholders - Predictability - Interdependencies - Reversibility Replaced vibes with math. ### Post 6 (Multi-Agent) Fourth breakthrough: AI agents as team members. Claude = Lead Architect ChatGPT = Validator Windsurf = Executor Cursor = Specialist SITREP protocol for coordination. 4x parallel execution. ### Post 7 (Results) The numbers: βœ… 120/120 models validated βœ… 9.2/10 quality score βœ… 140 chaos tests βœ… 100% pass rate βœ… 1 human + 4 AI agents βœ… 18 months ### Post 8 (Meta-Proof) The meta-recursive proof: If a framework can build itself, it can build anything at equivalent complexity. Base120 passed its own test. ### Post 9 (Learnings) What I'd do differently: 1. Build MCP server earlier (AI-native distribution) 2. Parallelize user acquisition with development 3. Document decisions BEFORE making them ### Post 10 (CTA) The framework is live at hummbl.io MCP server for Claude Desktop: @hummbl/mcp-server Full case study: [link] What's your Tier 4 problem? Let's see if Base120 can crack it. --- ## 2. LinkedIn Post (Long-form) **18 months ago, I had a problem.** Mental models everywhere. Notes, books, scattered insights. No system. No validation. No product. Today: 120 validated models. 9.2/10 quality score. 140 automated tests. Production deployment. **The twist?** I used the framework to build the framework. Here's what meta-recursive product development looks like: **Phase 1: Architecture** Applied DE3 (Modularization) to create 6 transformation categories. Applied CO8 (Layered Abstraction) to design Base-N scaling. Base42 became the "practical optimum" for wicked problems. **Phase 2: Validation** Replaced subjective judgment with a 5-question, 30-point wickedness rubric. Every model got empirically tested against real problems. **Phase 3: Multi-Agent Coordination** This is where it got interesting. I'm a solo founder with a full-time job. Traditional development timeline: 3-5 years. My solution: Treat AI systems as team members with defined roles. - Claude Sonnet 4.5: Lead Architect (strategy, documentation) - ChatGPT-5: Validator (QA, gap analysis) - Windsurf Cascade: Executor (implementation) - Cursor: Specialist (debugging) Military-style SITREP protocol for coordination. Authorization codes for autonomous execution boundaries. Result: 4x parallel execution. Zero rework from misalignment. **The meta-recursive proof:** If a framework can successfully build itself, it can handle any problem at equivalent complexity. Base120 passed its own test. **What's next:** - MCP server for Claude Desktop (live now) - API for developers - Case studies from external users If you're working on a Tier 4 (wicked) problemβ€”multiple stakeholders, low predictability, high interdependencyβ€”I'd love to hear about it. The framework is free at hummbl.io. DM me if you want to be a case study. #mentalmodels #frameworks #AI #productdevelopment #solofounder --- ## 3. One-Pager (PDF/Image format) ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ HUMMBL BASE120 β”‚ β”‚ Case Study: Framework-Driven Product Development β”‚ β”‚ β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ β”‚ β”‚ THE CHALLENGE β”‚ β”‚ ───────────────── β”‚ β”‚ β€’ Solo founder, competing time demands β”‚ β”‚ β€’ No existing product infrastructure β”‚ β”‚ β€’ Need for empirical validation β”‚ β”‚ β€’ Multi-system AI coordination required β”‚ β”‚ β”‚ β”‚ Wickedness Score: 19/30 (Tier 4) β”‚ β”‚ β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ β”‚ β”‚ THE APPROACH β”‚ β”‚ ───────────────── β”‚ β”‚ 6 Transformations: P | IN | CO | DE | RE | SY β”‚ β”‚ β”‚ β”‚ Base-N Scaling: β”‚ β”‚ Base6 (literacy) β†’ Base42 (wicked) β†’ Base120 (complete) β”‚ β”‚ β”‚ β”‚ Multi-Agent Coordination: β”‚ β”‚ Claude + ChatGPT + Windsurf + Cursor β”‚ β”‚ SITREP protocol for parallel execution β”‚ β”‚ β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ β”‚ β”‚ THE RESULTS β”‚ β”‚ ───────────────── β”‚ β”‚ β”‚ β”‚ 120/120 9.2/10 140 18 β”‚ β”‚ models quality tests months β”‚ β”‚ validated score passing β”‚ β”‚ β”‚ β”‚ βœ“ Meta-recursive validation (framework built itself) β”‚ β”‚ βœ“ 4x parallel execution via AI coordination β”‚ β”‚ βœ“ Production deployment at hummbl.io β”‚ β”‚ β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ β”‚ β”‚ KEY MODELS USED β”‚ β”‚ ───────────────── β”‚ β”‚ DE3 Modularization β”‚ Architecture design β”‚ β”‚ SY18 Telemetry β”‚ Validation methodology β”‚ β”‚ SY20 Systems-of-Systemsβ”‚ Multi-agent coordination β”‚ β”‚ RE4 Iterative Refinementβ”‚ Framework expansion β”‚ β”‚ β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ β”‚ β”‚ "If a framework can build itself, β”‚ β”‚ it can build anything at equivalent complexity." β”‚ β”‚ β”‚ β”‚ hummbl.io | @hummbl/mcp-server β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` --- ## 4. Video Script Outline (3-5 min) ### HOOK (0:00-0:15) "I spent 18 months building a mental models framework. The twist? I used the framework to build itself. Here's what happened." ### PROBLEM (0:15-0:45) - Show messy notes, scattered models - "No system. No validation. No product." - "Solo founder. Full-time job. Multiple clients." - "This was a Tier 4 wicked problem." ### SOLUTION PART 1: Architecture (0:45-1:30) - Introduce 6 transformations (visual diagram) - Explain Base-N scaling - "Base42 is the sweet spot for wicked problems" - Show hummbl.io interface briefly ### SOLUTION PART 2: Validation (1:30-2:15) - 5-question wickedness rubric (on screen) - "Replaced vibes with math" - Show quality scores, test results - "9.2 out of 10 across 120 models" ### SOLUTION PART 3: Multi-Agent (2:15-3:15) - Diagram of 4 AI agents with roles - "Treat AI as team members, not assistants" - Explain SITREP protocol briefly - "4x parallel execution. Zero rework." ### RESULTS (3:15-3:45) - Numbers on screen: 120 models, 9.2 quality, 140 tests, 18 months - "The meta-recursive proof: if a framework can build itself..." ### CTA (3:45-4:00) - "Framework is free at hummbl.io" - "MCP server for Claude Desktop" - "Link to full case study below" - "What's YOUR Tier 4 problem?" ### B-ROLL SUGGESTIONS - Screen recordings of hummbl.io - Terminal showing test suite running - Diagram animations for transformations - Split screen of multiple AI chats --- ## 5. Email/Newsletter Version **Subject:** I used a framework to build itself (here's what happened) Hey, 18 months ago I started building HUMMBLβ€”a mental models framework for wicked problems. The meta part: I used the framework to build the framework. **The challenge:** - Solo founder with a full-time job - No existing product or infrastructure - Needed empirical validation, not just theory - Had to coordinate multiple AI systems **The approach:** 1. Six transformations (P, IN, CO, DE, RE, SY) 2. Base-N scaling (match complexity to problem tier) 3. Quantitative wickedness scoring (5 questions, 30 points) 4. Multi-agent coordination (Claude + ChatGPT + Windsurf + Cursor) **The results:** - 120/120 models validated - 9.2/10 average quality - 140 chaos tests, 100% pass - 18 months, 1 human + 4 AI agents The meta-recursive proof: if a framework can build itself, it can handle anything at equivalent complexity. **Want to try it?** - Web: hummbl.io (free) - Claude Desktop: @hummbl/mcp-server - Full case study: [link] If you're working on a wicked problemβ€”multiple stakeholders, low predictability, high complexityβ€”reply and tell me about it. Looking for case study #2 and #3. – Reuben Chief Engineer, HUMMBL --- ## 6. Hacker News / Reddit Post **Title:** I built a 120-model mental models framework using the framework itself (18-month retrospective) **Body:** Sharing a case study from building HUMMBLβ€”a systematic mental models framework for complex problem-solving. **The meta-recursive twist:** I used the framework's own models to architect, validate, and deploy it. **Key technical decisions:** 1. **6 transformations, not categories:** Perspective, Inversion, Composition, Decomposition, Recursion, Systems. Every model maps to exactly one. 2. **Base-N scaling:** Base6 for literacy, Base42 for wicked problems, Base120 for pedagogical completeness. Match complexity to problem tier. 3. **Quantitative wickedness scoring:** 5-question rubric (variables, stakeholders, predictability, interdependencies, reversibility) replacing subjective tier assignment. 4. **Multi-agent development:** Treated Claude, ChatGPT, Windsurf, and Cursor as team members with defined roles. SITREP protocol for coordination. 4x parallel execution. **Results:** - 120 models, 9.2/10 quality score - 140 chaos tests, 100% pass rate - MCP server for Claude Desktop - 18 months, solo founder **Tech stack:** React, Cloudflare Workers, D1, TypeScript **Links:** - Live: hummbl.io - MCP: npm @hummbl/mcp-server - Case study: [link] Would love feedback on the framework architecture and multi-agent coordination approach. AMA about the development process.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/hummbl-dev/mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server