Skip to main content
Glama
hingaibm

Data Intelligence MCP Server

by hingaibm
DEV_PACKAGE_SHARING.md5.98 kB
# Development Package Sharing Guide This guide explains how to create a development package and share it with colleagues for testing. ## Quick Start The simplest way to share your development changes: ### Option 1: Build and Share a Wheel File (Recommended) 1. **Build the wheel package:** ```bash make -f Makefile.local wheel ``` This creates a `.whl` file in the `dist/` directory. 2. **Share the wheel file:** - The wheel file will be named something like: `ibm_watsonx_data_intelligence_mcp_server-<version>-py3-none-any.whl` - Share it via: - Email attachment - Cloud storage (Google Drive, Dropbox, etc.) - Internal file server - Slack/Teams file sharing 3. **Your colleague installs it:** ```bash pip install ibm_watsonx_data_intelligence_mcp_server-<version>-py3-none-any.whl ``` Or if using `uv`: ```bash uv pip install ibm_watsonx_data_intelligence_mcp_server-<version>-py3-none-any.whl ``` ### Option 2: Build Source Distribution (Alternative) If you prefer to share a source distribution: 1. **Build the source distribution:** ```bash make -f Makefile.local sdist ``` This creates a `.tar.gz` file in the `dist/` directory. 2. **Share and install:** ```bash pip install ibm_watsonx_data_intelligence_mcp_server-<version>.tar.gz ``` ### Option 3: Install Directly from Git (If Repository is Accessible) If your colleague has access to your git repository: ```bash pip install git+https://github.com/your-org/data-intelligence-mcp-server.git@your-branch-name ``` Or with `uv`: ```bash uv pip install git+https://github.com/your-org/data-intelligence-mcp-server.git@your-branch-name ``` ### Option 4: Build Both Wheel and Source Distribution To build both formats: ```bash make -f Makefile.local dist ``` This creates both `.whl` and `.tar.gz` files in `dist/`. ## Detailed Steps ### Step 1: Update Version (Optional but Recommended) For development packages, you might want to use a dev version identifier: 1. Edit `pyproject.toml`: ```toml version = "<version>.dev1" # or "<version>+dev.20250109" ``` 2. This helps distinguish dev builds from official releases. ### Step 2: Clean Previous Builds (Optional) ```bash make -f Makefile.local clean ``` This removes old build artifacts. ### Step 3: Build the Package Choose one of the following: - **Wheel only (recommended for sharing):** ```bash make -f Makefile.local wheel ``` - **Source distribution only:** ```bash make -f Makefile.local sdist ``` - **Both formats:** ```bash make -f Makefile.local dist ``` ### Step 4: Verify the Package (Optional) Before sharing, verify the package is valid: ```bash make -f Makefile.local verify ``` This runs `twine check` to validate the package structure. ### Step 5: Share the Package The built files are in the `dist/` directory: ```bash ls -lh dist/ ``` Share the appropriate file(s) with your colleague. ## Installation Instructions for Your Colleague Share these instructions with your colleague: ### Prerequisites - Python 3.11 or higher - `pip` or `uv` installed ### Installation Steps 1. **Download the wheel file** you shared with them. 2. **Install the package:** **Using pip:** ```bash pip install ibm_watsonx_data_intelligence_mcp_server-<version>-py3-none-any.whl ``` **Using uv:** ```bash uv pip install ibm_watsonx_data_intelligence_mcp_server-<version>-py3-none-any.whl ``` 3. **Verify installation:** ```bash pip show ibm-watsonx-data-intelligence-mcp-server ``` 4. **Test the installation:** ```bash python -m app.main --help ``` ### Uninstalling If they need to uninstall: ```bash pip uninstall ibm-watsonx-data-intelligence-mcp-server ``` ## Troubleshooting ### Issue: "No module named 'app'" **Solution:** Make sure they installed the package, not just downloaded it. The package must be installed in their Python environment. ### Issue: "Package conflicts with existing installation" **Solution:** Uninstall the existing version first: ```bash pip uninstall ibm-watsonx-data-intelligence-mcp-server pip install <new-wheel-file> ``` ### Issue: "Wheel file not found" **Solution:** Make sure they're in the correct directory where the wheel file is located, or provide the full path: ```bash pip install /path/to/ibm_watsonx_data_intelligence_mcp_server-<version>-py3-none-any.whl ``` ## Best Practices 1. **Version Naming:** Use dev version identifiers (e.g., `<version>.dev1`) to avoid conflicts with official releases. 2. **Document Changes:** Include a brief note about what changes are in this dev build. 3. **Test Before Sharing:** Run tests locally before building: ```bash make -f Makefile.local test ``` 4. **Clean Build:** Always clean before building a new package: ```bash make -f Makefile.local clean && make -f Makefile.local wheel ``` 5. **Verify Package:** Use `make -f Makefile.local verify` to check the package before sharing. ## Quick Reference | Command | Description | |---------|-------------| | `make -f Makefile.local clean` | Remove build artifacts | | `make -f Makefile.local wheel` | Build wheel package | | `make -f Makefile.local sdist` | Build source distribution | | `make -f Makefile.local dist` | Build both wheel and sdist | | `make -f Makefile.local verify` | Verify package validity | | `make -f Makefile.local install-local` | Build and install locally for testing | ## Example Workflow ```bash # 1. Clean previous builds make -f Makefile.local clean # 2. Update version in pyproject.toml (optional) # Edit: version = "<version>.dev1" # 3. Build the wheel make -f Makefile.local wheel # 4. Verify the package make -f Makefile.local verify # 5. Share dist/*.whl with your colleague ``` Your colleague then: ```bash # Install the shared wheel pip install ibm_watsonx_data_intelligence_mcp_server-<version>.dev1-py3-none-any.whl # Test it python -m app.main --help ```

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/hingaibm/data-intelligence-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server