Skip to main content
Glama
hingaibm

Data Intelligence MCP Server

by hingaibm
search_asset.py1.14 kB
from pydantic import BaseModel, Field from typing import Optional, List class SearchAssetRequest(BaseModel): """Request model for searching assets.""" search_prompt: str = Field(..., description="The search prompt from the user about data assets potentially with additional searching details") container_type: Optional[str] = Field( default="catalog", description="The container type in which to search assets, defaults to catalog", examples=["catalog", "project"] ) class SearchAssetResponse(BaseModel): """Search assets response model""" id: str = Field(..., description="Unique id of the asset") name: str = Field(..., description="Name of the asset") catalog_id: Optional[str] = Field(None, description="Catalog identifier in which the asset resides") project_id: Optional[str] = Field(None, description="Project identifier in which the asset resides") url: str = Field(...,description="URL of the asset") class SearchAssetListResponse(BaseModel): assets: List[SearchAssetResponse] total_count: int search_prompt: str container_type: str = "catalog"

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/hingaibm/data-intelligence-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server