Skip to main content
Glama
hingaibm

Data Intelligence MCP Server

by hingaibm
search_lineage_assets.py2.19 kB
# Copyright [2025] [IBM] # Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0) # See the LICENSE file in the project root for license information. from pydantic import BaseModel, Field from typing import List, Optional from app.services.lineage.models.lineage_asset import LineageAsset class SearchLineageAssetsRequest(BaseModel): """Request model for searching specific name in the lineage of asset""" name_query: str = Field( "*", description="Search text for asset names - exact matches appear first, followed by partial matches", ) is_operational: bool = Field( False, description="Filters assets based on whether the asset has asset type which belongs to the operational asset types.", ) tag: Optional[str] = Field( None, description="Filters assets by tags.", ) data_quality_operator: Optional[str] = Field( None, description="""a comparison operator for quality score (greater, lesser, or symbols like >, <, <=). The accepted values are: 1) equals 2) greater_than 3) greater_than_or_equal 4) less_than 5) less_than_or_equal""", ) data_quality_value: float = Field( 0.0, description="a numerical value assotiated with quality score.", ) business_term: Optional[str] = Field( None, description="Business term provided by the user.", ) business_classification: Optional[str] = Field( None, description="Business classification provided by the user.", ) technology_name: Optional[str] = Field( None, description="Fill this optional value ONLY with the name of technology passed by the user.", ) asset_type: Optional[str] = Field( None, description="Fill this optional value ONLY with the type of asset passed by the user", ) class SearchLineageAssetsResponse(BaseModel): """Search lineage assets response model""" lineage_assets: List[LineageAsset] = Field( ..., description="List of lineage assets." ) response_is_complete: bool

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/hingaibm/data-intelligence-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server