Skip to main content
Glama

semantic_search

Find semantically related content in user-configured documents using OpenAI Embeddings. Input a query and optional limit to retrieve the most relevant results efficiently.

Instructions

意味的に関連する内容を検索

Args: query: 検索クエリ limit: 返す結果の最大数(デフォルト: 5)

Input Schema

NameRequiredDescriptionDefault
limitNo
queryYes

Input Schema (JSON Schema)

{ "properties": { "limit": { "default": 5, "title": "Limit", "type": "integer" }, "query": { "title": "Query", "type": "string" } }, "required": [ "query" ], "title": "semantic_searchArguments", "type": "object" }

Implementation Reference

  • MCP tool handler for semantic_search. Registers the tool with @mcp.tool() and delegates execution to DocumentManager.semantic_search.
    @mcp.tool() async def semantic_search(query: str, limit: int = 5) -> str: """意味的に関連する内容を検索 Args: query: 検索クエリ limit: 返す結果の最大数(デフォルト: 5) """ return doc_manager.semantic_search(query, limit)
  • Core implementation of semantic search using OpenAI embeddings, cosine similarity, and preview extraction from cached document embeddings.
    def semantic_search(self, query: str, limit: int = 5) -> str: """意味的に関連する内容を検索""" if not self.client: return "Error: OpenAI API key not configured" if not self.embeddings_cache: return "Error: No embeddings available. Run 'python scripts/generate_metadata.py' first." try: # クエリのembeddingを取得 query_embedding = self._get_embedding(query) # 各ドキュメントとの類似度を計算 similarities = [] for doc_path, doc_embedding in self.embeddings_cache.items(): # embeddingがリストとして保存されているので、そのまま使用 similarity = self._cosine_similarity(query_embedding, doc_embedding) similarities.append((doc_path, similarity)) # 類似度でソート similarities.sort(key=lambda x: x[1], reverse=True) # 結果を構築 results = [] for doc_path, similarity in similarities[:limit]: description = self.docs_metadata.get(doc_path, "") result_line = f"{doc_path} (相似度: {similarity:.3f})" if description: result_line += f" - {description}" results.append(result_line) # 関連する内容を一部抽出 if doc_path in self.docs_content: content = self.docs_content[doc_path] preview = self._extract_preview(content, query) if preview: results.append(f" → {preview}") return "\n\n".join(results) except Exception as e: return f"Error during semantic search: {e}"

Other Tools

Related Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/herring101/docs-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server