Skip to main content
Glama

delete_table_column_tool

Remove specified columns from Google Sheets tables to clean data or restructure layouts. The tool deletes selected columns and shifts remaining columns left automatically.

Instructions

Delete specific columns from a table in Google Sheets. This tool removes the specified columns from the table and updates the table structure accordingly. The remaining columns will be shifted left to fill the gaps. Args: spreadsheet_name: Name of the spreadsheet sheet_name: Name of the sheet containing the table table_name: Name of the table to delete columns from column_names: List of column names to delete Returns: JSON string with operation results

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
spreadsheet_nameYesThe name of the Google Spreadsheet
sheet_nameYesThe name of the sheet containing the table
table_nameYesName of the table to delete columns from
column_namesYesList of column names to delete from the table

Implementation Reference

  • MCP tool handler function for delete_table_column_tool. Includes schema definitions via Pydantic Fields, docstring, and delegates to core handler. Also serves as registration via @mcp.tool().
    @mcp.tool() def delete_table_column_tool( spreadsheet_name: str = Field(..., description="The name of the Google Spreadsheet"), sheet_name: str = Field(..., description="The name of the sheet containing the table"), table_name: str = Field(..., description="Name of the table to delete columns from"), column_names: List[str] = Field(..., description="List of column names to delete from the table") ) -> str: """ Delete specific columns from a table in Google Sheets. This tool removes the specified columns from the table and updates the table structure accordingly. The remaining columns will be shifted left to fill the gaps. Args: spreadsheet_name: Name of the spreadsheet sheet_name: Name of the sheet containing the table table_name: Name of the table to delete columns from column_names: List of column names to delete Returns: JSON string with operation results """ sheets_service, drive_service = _get_google_services() return delete_table_column_handler( drive_service, sheets_service, spreadsheet_name, sheet_name, table_name, column_names )
  • Core helper function implementing the logic to delete table columns using Google Sheets API: validates inputs, retrieves table info, deletes column ranges, updates table properties, and handles errors.
    def delete_table_column_handler( drive_service, sheets_service, spreadsheet_name: str, sheet_name: str, table_name: str, column_names: List[str] ) -> str: """ Delete specific columns from a table in Google Sheets. According to the official Google Sheets API documentation, to delete columns from a table: 1. Use DeleteRangeRequest to delete the column from the sheet (within the table's range) 2. Use UpdateTableRequest to update the table's range and column properties to reflect the column removal Args: drive_service: Google Drive service instance sheets_service: Google Sheets service instance spreadsheet_name: Name of the spreadsheet sheet_name: Name of the sheet containing the table table_name: Name of the table to delete columns from column_names: List of column names to delete Returns: str: Success message with deletion details or error message """ try: # Validate inputs if not table_name or table_name.strip() == "": return compact_json_response({ "success": False, "message": "Table name is required." }) if not column_names or len(column_names) == 0: return compact_json_response({ "success": False, "message": "Column names are required. Please provide at least one column name to delete." }) # Validate column names validated_column_names = [] invalid_column_names = [] for i, col_name in enumerate(column_names): if not col_name or not isinstance(col_name, str) or col_name.strip() == "": invalid_column_names.append({"index": i, "value": col_name, "error": "Column name must be a non-empty string"}) continue validated_column_names.append(col_name.strip()) if invalid_column_names: error_messages = [f"Column {item['index']+1} ('{item['value']}'): {item['error']}" for item in invalid_column_names] return compact_json_response({ "success": False, "message": f"Invalid column names: {'; '.join(error_messages)}", "invalid_column_names": invalid_column_names }) if not validated_column_names: return compact_json_response({ "success": False, "message": "No valid column names provided after validation." }) # Remove duplicates unique_column_names = list(set(validated_column_names)) # Get spreadsheet ID spreadsheet_id = get_spreadsheet_id_by_name(drive_service, spreadsheet_name) if not spreadsheet_id: return compact_json_response({ "success": False, "message": f"Spreadsheet '{spreadsheet_name}' not found." }) # Get sheet ID sheet_ids = get_sheet_ids_by_names(sheets_service, spreadsheet_id, [sheet_name]) sheet_id = sheet_ids.get(sheet_name) if sheet_id is None: return compact_json_response({ "success": False, "message": f"Sheet '{sheet_name}' not found in spreadsheet '{spreadsheet_name}'." }) # Get table ID table_ids = get_table_ids_by_names(sheets_service, spreadsheet_id, sheet_name, [table_name]) table_id = table_ids.get(table_name) if not table_id: return compact_json_response({ "success": False, "message": f"Table '{table_name}' not found in sheet '{sheet_name}'." }) # Get table information try: table_info = get_table_info(sheets_service, spreadsheet_id, table_id) table_range = table_info.get("range", {}) existing_columns = table_info.get("columns", []) except Exception as e: return compact_json_response({ "success": False, "message": f"Could not retrieve information for table '{table_name}': {str(e)}" }) # Get table boundaries table_start_row = table_range.get("startRowIndex", 0) table_end_row = table_range.get("endRowIndex", 0) table_start_col = table_range.get("startColumnIndex", 0) table_end_col = table_range.get("endColumnIndex", 0) # Validate column names exist in the table existing_column_names = [col.get("name", "") for col in existing_columns] missing_columns = [] valid_delete_columns = [] for col_name in unique_column_names: if col_name not in existing_column_names: missing_columns.append(col_name) else: valid_delete_columns.append(col_name) if missing_columns: return compact_json_response({ "success": False, "message": f"Column(s) not found in table: {', '.join(missing_columns)}. Available columns: {', '.join(existing_column_names)}", "missing_columns": missing_columns, "available_columns": existing_column_names }) if not valid_delete_columns: return compact_json_response({ "success": False, "message": "No valid columns to delete after validation." }) # Check if trying to delete all columns if len(valid_delete_columns) >= len(existing_columns): return compact_json_response({ "success": False, "message": "Cannot delete all columns from a table. At least one column must remain." }) # Create requests for deletion and table update requests = [] # 1. Delete columns using DeleteRangeRequest (rightmost to leftmost to avoid index shifting) # Sort columns by their index in descending order columns_to_delete = [] for col_name in valid_delete_columns: for i, col_info in enumerate(existing_columns): if col_info.get("name") == col_name: columns_to_delete.append({ "name": col_name, "index": col_info.get("index", i), "api_index": table_start_col + col_info.get("index", i) }) break # Sort by index in descending order for proper deletion columns_to_delete.sort(key=lambda x: x["index"], reverse=True) # Create DeleteRangeRequest for each column for col_info in columns_to_delete: delete_request = { "deleteRange": { "range": { "sheetId": sheet_id, "startRowIndex": 0, "endRowIndex": table_end_row, "startColumnIndex": col_info["api_index"], "endColumnIndex": col_info["api_index"] + 1 }, "shiftDimension": "COLUMNS" } } requests.append(delete_request) # 2. Update table with new column properties # Build new column properties array (excluding deleted columns) new_column_properties = [] remaining_columns = [] for col_info in existing_columns: if col_info.get("name") not in valid_delete_columns: remaining_columns.append(col_info) # Convert remaining columns to API format and update indices for i, col_info in enumerate(remaining_columns): api_col_prop = { "columnIndex": i, "columnName": col_info.get("name", ""), "columnType": col_info.get("type", "TEXT") } # Preserve dataValidationRule if it exists if "dataValidationRule" in col_info: api_col_prop["dataValidationRule"] = col_info["dataValidationRule"] new_column_properties.append(api_col_prop) # Update table range and column properties new_end_col = table_end_col - len(valid_delete_columns) update_table_request = { "updateTable": { "table": { "tableId": table_id, "range": { "sheetId": sheet_id, "startRowIndex": table_start_row, "endRowIndex": table_end_row, "startColumnIndex": table_start_col, "endColumnIndex": new_end_col }, "columnProperties": new_column_properties }, "fields": "range,columnProperties" } } requests.append(update_table_request) # Execute the requests response = sheets_service.spreadsheets().batchUpdate( spreadsheetId=spreadsheet_id, body={"requests": requests} ).execute() # Extract response information replies = response.get("replies", []) deleted_count = len(valid_delete_columns) response_data = { "success": True, "spreadsheet_name": spreadsheet_name, "sheet_name": sheet_name, "table_name": table_name, "columns_deleted": deleted_count, "deleted_column_names": valid_delete_columns, "remaining_column_count": len(new_column_properties), "remaining_columns": [col.get("columnName", "") for col in new_column_properties], "message": f"Successfully deleted {deleted_count} column(s) from table '{table_name}' in '{sheet_name}'" } return compact_json_response(response_data) except HttpError as error: return compact_json_response({ "success": False, "message": f"Google Sheets API error: {str(error)}" }) except Exception as e: return compact_json_response({ "success": False, "message": f"Error deleting table columns: {str(e)}" })

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/henilcalagiya/google-sheets-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server