Skip to main content
Glama
agente_langgraph.py1.15 kB
from langchain_ollama import ChatOllama from langchain_core.messages import HumanMessage, AIMessage from typing import List from dotenv import load_dotenv import os load_dotenv() llm = ChatOllama(model=os.getenv("OLLAMA_MODEL")) class AgentMemory: def __init__(self): self.messages = [] def add_message(self, role, content): self.messages.append({"role": role, "content": content}) if len(self.messages) > 20: # Limita memória self.messages = self.messages[-10:] def get_context(self): return self.messages[-8:] # Últimas 8 mensagens memory = AgentMemory() def chat_with_memory(user_input): memory.add_message("user", user_input) context = "\n".join([f"{m['role']}: {m['content']}" for m in memory.get_context()]) prompt = f"""Você é assistente do Helcio, desenvolvedor Python FastAPI. Histórico recente: {context} PERGUNTA: {user_input} RESPOSTA em português:""" response = llm.invoke(prompt) memory.add_message("assistant", response.content) return response.content print("✅ Agente LangGraph + Memória SIMPLES CRIADO!")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/helciocosta/memory-ia-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server