Skip to main content
Glama

MCP Server

by hburgoyne
memory.py1.18 kB
from sqlalchemy import Column, String, ForeignKey, DateTime, Text from sqlalchemy.dialects.postgresql import UUID from sqlalchemy.orm import relationship import uuid from datetime import datetime from pgvector.sqlalchemy import Vector from app.models.base import BaseModel class Memory(BaseModel): """Memory model for storing user memories with vector embeddings.""" __tablename__ = "memories" user_id = Column(UUID(as_uuid=True), ForeignKey("users.id"), nullable=False) text = Column(Text, nullable=False) encrypted_text = Column(Text, nullable=True) # For storing encrypted version of the text permission = Column(String, nullable=False, default="private") # private, public embedding = Column(Vector(1536), nullable=True) # Vector embedding for semantic search expiration_date = Column(DateTime, nullable=True) # When the memory expires # Relationships user = relationship("User", back_populates="memories") @property def is_expired(self): """Check if the memory has expired.""" if self.expiration_date is None: return False return datetime.utcnow() > self.expiration_date

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/hburgoyne/picard_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server