Skip to main content
Glama

FastAPI + MCP + Gemini Integration

FastAPI + MCP + Gemini Integration

This project demonstrates how to integrate a FastAPI application with Google's Gemini AI using a simplified MCP (Model Context Protocol) server implementation.

๐Ÿ—๏ธ Architecture

  • FastAPI App (app.py): A sample REST API with user management, task management, and dice rolling

  • Simple MCP Server (simple_mcp_server.py): Simplified MCP server that exposes FastAPI endpoints as tools

  • Gemini Integration (simple_gemini_integration.py): Connects Gemini AI with the MCP server

๐Ÿš€ Features

FastAPI Application

  • User management (CRUD operations)

  • Task management with completion tracking

  • Dice rolling functionality

  • Health checks and statistics

  • RESTful API endpoints

MCP Server Tools

  • get_health_status(): Check application health

  • get_app_info(): Get application information

  • get_all_users(): Retrieve all users

  • create_user(): Create new users

  • get_user_by_id(): Get specific user

  • get_all_tasks(): Retrieve all tasks

  • create_task(): Create new tasks

  • complete_task(): Mark tasks as completed

  • roll_dice(): Roll dice with custom parameters

  • get_app_statistics(): Get application statistics

  • search_users_by_name(): Search users by name

  • get_pending_tasks(): Get incomplete tasks

  • get_completed_tasks(): Get completed tasks

๐Ÿ“‹ Prerequisites

  • Python 3.8+

  • Google Gemini API key (optional - demo works in simulation mode)

  • Basic Python packages (fastapi, uvicorn, aiohttp, google-generativeai)

๐Ÿ› ๏ธ Installation

  1. Clone or download the project files

  2. Install dependencies:

    pip install fastapi uvicorn aiohttp google-generativeai python-dotenv requests
  3. Set up environment variables (optional): Create a .env file and add your Gemini API key:

    GEMINI_API_KEY=your_actual_api_key_here

    Note: The demo works without an API key in simulation mode.

  4. Get a Gemini API key:

๐ŸŽฏ Usage

0. Look for the video demo

You can look for the zip file in which screen recording is present. That includes a demo question and an answer.

1. Start the FastAPI Server

python app.py

The FastAPI server will run on http://localhost:8000

2. Test the FastAPI Endpoints

You can test the API directly:

# Health check curl http://localhost:8000/health # Get app info curl http://localhost:8000/ # Create a user curl -X POST "http://localhost:8000/users?name=John&email=john@example.com&age=30" # Create a task curl -X POST "http://localhost:8000/tasks?title=Learn%20FastMCP&description=Study%20FastMCP%20integration" # Roll dice curl "http://localhost:8000/dice/roll?sides=6&count=3"

3. Run the Gemini Integration

Demo Mode (Predefined Queries)

python simple_gemini_integration.py

Interactive Mode

python simple_gemini_integration.py --interactive

Automated Demo

python start_simple_demo.py

4. Example Gemini Queries

In interactive mode, you can ask questions like:

  • "Check the health status of the FastAPI application"

  • "Create a new user named 'Alice' with email 'alice@example.com' and age 25"

  • "Create a task called 'Learn Python' with description 'Study Python programming'"

  • "Roll 5 dice with 10 sides each"

  • "Show me all users and get the application statistics"

  • "Mark the first task as completed"

  • "Show me all pending tasks"

๐Ÿ”ง Configuration

FastAPI Server

  • Default port: 8000

  • Host: 0.0.0.0 (accessible from all interfaces)

  • Modify app.py to change these settings

MCP Server

  • Connects to FastAPI server at http://localhost:8000

  • Modify API_BASE_URL in mcp_server.py if needed

Gemini Integration

  • Uses Gemini 2.0 Flash model

  • Configure API key via environment variable

  • Modify model settings in gemini_integration.py

๐Ÿ“ Project Structure

. โ”œโ”€โ”€ app.py # FastAPI application โ”œโ”€โ”€ simple_mcp_server.py # Simplified MCP server with tools โ”œโ”€โ”€ simple_gemini_integration.py # Gemini + MCP integration โ”œโ”€โ”€ start_simple_demo.py # Automated startup script โ”œโ”€โ”€ test_simple_integration.py # Integration testing โ”œโ”€โ”€ requirements.txt # Python dependencies โ”œโ”€โ”€ .gitignore # Git ignore file โ””โ”€โ”€ README.md # This file

๐Ÿงช Testing

Test FastAPI Endpoints

# Start the server python app.py # In another terminal, test endpoints curl http://localhost:8000/health curl http://localhost:8000/users curl http://localhost:8000/tasks

Test MCP Server

python simple_mcp_server.py

Test Gemini Integration

# Make sure FastAPI server is running python app.py # In another terminal, run integration python simple_gemini_integration.py

Test Everything

python test_simple_integration.py

๐Ÿ” Troubleshooting

Common Issues

  1. "Please set GEMINI_API_KEY environment variable"

    • Make sure you have a .env file with your API key

    • Check that the API key is valid

  2. "Error connecting to MCP server"

    • Ensure the FastAPI server is running on port 8000

    • Check that all dependencies are installed

  3. "ModuleNotFoundError"

    • Run pip install -r requirements.txt

    • Make sure you're using Python 3.8+

Debug Mode

To see more detailed error messages, you can modify the integration script to include more logging.

๐Ÿš€ Next Steps

  • Add more FastAPI endpoints

  • Create additional MCP tools

  • Implement authentication

  • Add database persistence

  • Create a web interface

  • Deploy to cloud platforms

๐Ÿ“š Learn More

๐Ÿค Contributing

Feel free to submit issues and enhancement requests!

๐Ÿ“„ License

This project is open source and available under the MIT License.

-
security - not tested
F
license - not found
-
quality - not tested

local-only server

The server can only run on the client's local machine because it depends on local resources.

Enables Gemini AI to interact with a FastAPI application through MCP tools for user management, task management, and dice rolling functionality. Provides natural language access to REST API endpoints including CRUD operations, health checks, and application statistics.

  1. ๐Ÿ—๏ธ Architecture
    1. ๐Ÿš€ Features
      1. FastAPI Application
      2. MCP Server Tools
    2. ๐Ÿ“‹ Prerequisites
      1. ๐Ÿ› ๏ธ Installation
        1. ๐ŸŽฏ Usage
          1. 0. Look for the video demo
          2. 1. Start the FastAPI Server
          3. 2. Test the FastAPI Endpoints
          4. 3. Run the Gemini Integration
          5. 4. Example Gemini Queries
        2. ๐Ÿ”ง Configuration
          1. FastAPI Server
          2. MCP Server
          3. Gemini Integration
        3. ๐Ÿ“ Project Structure
          1. ๐Ÿงช Testing
            1. Test FastAPI Endpoints
            2. Test MCP Server
            3. Test Gemini Integration
            4. Test Everything
          2. ๐Ÿ” Troubleshooting
            1. Common Issues
            2. Debug Mode
          3. ๐Ÿš€ Next Steps
            1. ๐Ÿ“š Learn More
              1. ๐Ÿค Contributing
                1. ๐Ÿ“„ License

                  MCP directory API

                  We provide all the information about MCP servers via our MCP API.

                  curl -X GET 'https://glama.ai/api/mcp/v1/servers/haris-khan-dev/MCP-server'

                  If you have feedback or need assistance with the MCP directory API, please join our Discord server