Skip to main content
Glama
agent_management_tools.py•8.52 kB
""" Agent management tool definitions for MCP Memory Server. This module contains tool definitions for agent lifecycle management, permissions, and configuration operations. Extracted from monolithic tool_definitions.py for better maintainability. """ from typing import Dict, Any, List class AgentManagementTools: """Agent lifecycle and permission management tools.""" @staticmethod def get_tools() -> List[Dict[str, Any]]: """Get agent management tool definitions.""" return [ { "name": "initialize_new_agent", "description": ( "Initialize a new agent with role, memory layer " "configuration, and policy loading (enhanced version " "of agent_startup prompt)" ), "inputSchema": { "type": "object", "properties": { "agent_id": { "type": "string", "description": ( "Unique identifier for the agent " "(auto-generated if not provided)" ) }, "agent_role": { "type": "string", "description": ( "Role of the agent (default: general)" ) }, "memory_layers": { "type": "array", "items": { "type": "string", "enum": ["global", "learned", "agent"] }, "description": ( "Memory layers agent can access " "(default: ['global', 'learned'])" ) }, "policy_version": { "type": "string", "description": ( "Policy version to load (default: latest)" ) }, "policy_hash": { "type": "string", "description": ( "Expected policy hash for verification" ) }, "load_policies": { "type": "boolean", "description": ( "Whether to load policies during " "initialization (default: true)" ) } }, "required": [] } }, { "name": "configure_agent_permissions", "description": ( "Configure memory layer access permissions for an agent" ), "inputSchema": { "type": "object", "properties": { "agent_id": { "type": "string", "description": "Agent ID to configure" }, "permissions": { "type": "object", "description": "Permission configuration", "properties": { "can_read": { "type": "array", "items": { "type": "string", "enum": ["global", "learned", "agent"] }, "description": ( "Memory layers agent can read from" ) }, "can_write": { "type": "array", "items": { "type": "string", "enum": ["global", "learned", "agent"] }, "description": ( "Memory layers agent can write to" ) }, "can_admin": { "type": "array", "items": { "type": "string", "enum": ["global", "learned", "agent"] }, "description": ( "Memory layers agent can administer" ) } } } }, "required": ["agent_id", "permissions"] } }, { "name": "query_memory_for_agent", "description": ( "Query memory for an agent with " "permission-based access control" ), "inputSchema": { "type": "object", "properties": { "agent_id": { "type": "string", "description": "Agent ID performing the query" }, "query": { "type": "string", "description": "Search query text" }, "memory_layers": { "type": "array", "items": { "type": "string", "enum": ["global", "learned", "agent"] }, "description": ( "Memory layers to search " "(subject to permissions)" ) }, "limit": { "type": "integer", "description": ( "Maximum number of results (default: 10)" ) } }, "required": ["agent_id", "query"] } }, { "name": "store_agent_action", "description": ( "Store an agent action with optional " "learned memory integration" ), "inputSchema": { "type": "object", "properties": { "agent_id": { "type": "string", "description": "Agent ID performing the action" }, "action": { "type": "string", "description": "Description of the action taken" }, "context": { "type": "object", "description": ( "Contextual information about the action" ) }, "outcome": { "type": "string", "description": "Result or outcome of the action" }, "learn": { "type": "boolean", "description": ( "Store action as learned memory " "(default: false)" ) } }, "required": ["agent_id", "action", "outcome"] } } ]

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/hannesnortje/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server