Skip to main content
Glama

MCP Memory Server

by hannesnortje
delete_documents_example.py•2.88 kB
#!/usr/bin/env python3 """ Example script showing different ways to delete documents from the MCP memory database. """ import asyncio import sys from pathlib import Path # Add src to path sys.path.append(str(Path(__file__).parent / "src")) from generic_memory_service import GenericMemoryService from qdrant_client import QdrantClient async def main(): """Demonstrate document deletion methods.""" # Initialize services client = QdrantClient(host="localhost", port=6333) memory_service = GenericMemoryService(client) print("šŸ—‘ļø Document Deletion Examples") print("=" * 50) # Method 1: Delete by document ID print("\n1. Delete by Document ID:") print(" memory_service.delete_memory(memory_id='doc-123', collection='my-collection')") # Method 2: Search and delete print("\n2. Search and Delete Pattern:") search_result = await memory_service.search_memory( query="test", collections=["global_memory"], limit=1 ) if search_result.get("success") and search_result.get("results"): result = search_result["results"][0] document_id = result["id"] collection = result["collection"] content = result["payload"].get("content", "")[:50] + "..." print(f" Found document: {content}") print(f" ID: {document_id}") print(f" Collection: {collection}") # Uncomment to actually delete: # delete_result = await memory_service.delete_memory( # memory_id=document_id, # collection=collection # ) # print(f" Delete result: {delete_result}") else: print(" No documents found to demonstrate deletion") # Method 3: List collections and their document counts print("\n3. Collection Document Counts:") collections_result = await memory_service.list_collections() if collections_result.get("success"): for collection in collections_result["collections"]: name = collection["name"] doc_count = collection["stats"]["document_count"] print(f" {name}: {doc_count} documents") print("\nšŸ“‹ Available Deletion Methods:") print(" • Via UI: Search results have Delete buttons and right-click context menu") print(" • Via API: memory_service.delete_memory(memory_id, collection)") print(" • Via MCP Tools: Use existing MCP server tools") print(" • Direct Qdrant: client.delete() with point selectors or filters") print("\nāš ļø Important Notes:") print(" • Deletion is permanent and cannot be undone") print(" • Make sure you have the correct document ID and collection") print(" • Consider backing up important data before bulk deletions") if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/hannesnortje/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server