Skip to main content
Glama

MCP Server Gemini

by gurr-i
api.md6.79 kB
# API Documentation ## Overview The MCP Server Gemini provides 6 powerful tools for interacting with Google's Gemini AI models through the Model Context Protocol. ## Tools ### 1. generate_text Generate text using Gemini models with advanced features. #### Parameters | Parameter | Type | Required | Default | Description | |-----------|------|----------|---------|-------------| | `prompt` | string | ✅ | - | The text prompt to send to Gemini | | `model` | string | ❌ | `gemini-2.5-flash` | Gemini model to use | | `systemInstruction` | string | ❌ | - | System instruction to guide behavior | | `temperature` | number | ❌ | `0.7` | Creativity level (0-2) | | `maxTokens` | number | ❌ | `2048` | Maximum tokens to generate | | `topK` | number | ❌ | `40` | Top-k sampling parameter | | `topP` | number | ❌ | `0.95` | Top-p (nucleus) sampling | | `jsonMode` | boolean | ❌ | `false` | Enable structured JSON output | | `jsonSchema` | string | ❌ | - | JSON schema for validation (when jsonMode=true) | | `grounding` | boolean | ❌ | `false` | Enable Google Search grounding | | `safetySettings` | string | ❌ | - | Safety settings as JSON string | | `conversationId` | string | ❌ | - | ID for conversation context | #### Example Usage ```javascript // Basic text generation { "prompt": "Explain quantum computing in simple terms", "model": "gemini-2.5-flash", "temperature": 0.7 } // JSON mode with schema { "prompt": "Extract key information from this text: ...", "jsonMode": true, "jsonSchema": "{\"type\":\"object\",\"properties\":{\"summary\":{\"type\":\"string\"},\"keyPoints\":{\"type\":\"array\",\"items\":{\"type\":\"string\"}}}}" } // With grounding for current information { "prompt": "What are the latest developments in AI?", "grounding": true, "model": "gemini-2.5-pro" } ``` ### 2. analyze_image Analyze images using Gemini's vision capabilities. #### Parameters | Parameter | Type | Required | Default | Description | |-----------|------|----------|---------|-------------| | `prompt` | string | ✅ | - | Question or instruction about the image | | `imageUrl` | string | ❌* | - | URL of the image to analyze | | `imageBase64` | string | ❌* | - | Base64-encoded image data | | `model` | string | ❌ | `gemini-2.5-flash` | Vision-capable model | *Either `imageUrl` or `imageBase64` must be provided. #### Example Usage ```javascript // Analyze image from URL { "prompt": "What's in this image?", "imageUrl": "https://example.com/image.jpg", "model": "gemini-2.5-pro" } // Analyze base64 image { "prompt": "Describe the technical diagram", "imageBase64": "..." } ``` ### 3. count_tokens Count tokens for cost estimation and planning. #### Parameters | Parameter | Type | Required | Default | Description | |-----------|------|----------|---------|-------------| | `text` | string | ✅ | - | Text to count tokens for | | `model` | string | ❌ | `gemini-2.5-flash` | Model to use for counting | #### Example Usage ```javascript { "text": "This is a sample text to count tokens for cost estimation.", "model": "gemini-2.5-pro" } ``` ### 4. list_models List all available Gemini models and their capabilities. #### Parameters | Parameter | Type | Required | Default | Description | |-----------|------|----------|---------|-------------| | `filter` | string | ❌ | `all` | Filter models by capability | #### Filter Options - `all` - All available models - `thinking` - Models with thinking capabilities - `vision` - Models with vision support - `grounding` - Models with Google Search grounding - `json_mode` - Models supporting JSON mode #### Example Usage ```javascript // List all models { "filter": "all" } // List only thinking models { "filter": "thinking" } ``` ### 5. embed_text Generate text embeddings using Gemini embedding models. #### Parameters | Parameter | Type | Required | Default | Description | |-----------|------|----------|---------|-------------| | `text` | string | ✅ | - | Text to generate embeddings for | | `model` | string | ❌ | `text-embedding-004` | Embedding model to use | #### Available Embedding Models - `text-embedding-004` - Latest embedding model - `text-multilingual-embedding-002` - Multilingual support #### Example Usage ```javascript { "text": "This is a sample text for embedding generation.", "model": "text-embedding-004" } ``` ### 6. get_help Get help and usage information for the server. #### Parameters | Parameter | Type | Required | Default | Description | |-----------|------|----------|---------|-------------| | `topic` | string | ❌ | `overview` | Help topic to get information about | #### Available Topics - `overview` - General overview and quick start - `tools` - Detailed tool information - `models` - Model selection guide - `parameters` - Parameter explanations - `examples` - Usage examples - `quick-start` - Quick start guide #### Example Usage ```javascript // Get overview { "topic": "overview" } // Get tool details { "topic": "tools" } ``` ## Response Format All tools return responses in the standard MCP format: ```javascript { "jsonrpc": "2.0", "id": "request-id", "result": { "content": [ { "type": "text", "text": "Response content here" } ], "metadata": { // Additional metadata } } } ``` ## Error Handling Errors are returned in standard MCP error format: ```javascript { "jsonrpc": "2.0", "id": "request-id", "error": { "code": -32603, "message": "Error description", "data": { // Additional error details } } } ``` ### Common Error Codes | Code | Description | |------|-------------| | `-32602` | Invalid parameters | | `-32603` | Internal error | | `-32001` | Authentication error | | `-32002` | Rate limit exceeded | | `-32003` | Request timeout | ## Rate Limiting The server implements rate limiting to protect against abuse: - **Default**: 100 requests per minute - **Configurable**: Set via environment variables - **Per-client**: Rate limits are applied per client connection ## Best Practices ### Model Selection - Use `gemini-2.5-flash` for general purposes - Use `gemini-2.5-pro` for complex reasoning - Use `gemini-2.5-flash-lite` for high-throughput tasks ### Parameter Optimization - Lower temperature (0.1-0.3) for factual content - Higher temperature (0.8-1.2) for creative content - Use `maxTokens` to control response length and costs ### Error Handling - Implement retry logic for transient errors - Handle rate limiting gracefully - Validate parameters before sending requests ### Performance - Use conversation IDs to maintain context - Cache embeddings when possible - Monitor token usage for cost optimization

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/gurr-i/mcp-server-gemini-pro'

If you have feedback or need assistance with the MCP directory API, please join our Discord server