# Quick Start Guide - Excel MCP Master Server 🚀
This guide will help you get started with the Excel MCP Master Server quickly and efficiently.
## 📋 Prerequisites
Before you begin, ensure you have:
- Node.js 14.0 or higher
- Python 3.8 or higher
- A compatible MCP client (Claude Desktop, or other MCP-compatible applications)
## 🔧 Installation
### Recommended: Using NPX (No Installation Required)
The easiest way to use the Excel MCP Server is directly with `npx`:
```bash
# Test it works
npx @guillehr2/excel-mcp-server --version
```
### Alternative: Global Installation
Install globally for faster startup:
```bash
npm install -g @guillehr2/excel-mcp-server
# Verify installation
excel-mcp-server --version
```
### Development Setup
For development or customization:
```bash
git clone https://github.com/guillehr2/Excel-MCP-Server-Master.git
cd Excel-MCP-Server-Master
npm install
pip install -r requirements.txt
```
## ⚙️ Configuration
### Claude Desktop Configuration
Add the following to your Claude Desktop configuration file:
**Windows:** `%APPDATA%\Claude\claude_desktop_config.json`
**macOS:** `~/Library/Application Support/Claude/claude_desktop_config.json`
**Linux:** `~/.config/Claude/claude_desktop_config.json`
#### Using NPX (Recommended)
```json
{
"mcpServers": {
"excel-master": {
"command": "npx",
"args": [
"-y",
"@guillehr2/excel-mcp-server@latest"
]
}
}
}
```
#### Using Specific Version
For stability, you can pin to a specific version:
```json
{
"mcpServers": {
"excel-master": {
"command": "npx",
"args": [
"-y",
"@guillehr2/excel-mcp-server@1.0.3"
]
}
}
}
```
#### Using Global Installation
```json
{
"mcpServers": {
"excel-master": {
"command": "excel-mcp-server"
}
}
}
```
#### Using Local Development
```json
{
"mcpServers": {
"excel-master": {
"command": "node",
"args": ["C:/path/to/Excel-MCP-Server-Master/index.js"]
}
}
}
```
### Other MCP Clients
For other MCP clients, adapt the configuration format as needed. The key components are:
- **Command**: `npx` or `excel-mcp-server` or `node`
- **Arguments**: Package name or script path
## 🏃♂️ First Steps
### 1. Verify Installation
After configuring your MCP client:
1. Restart your MCP client completely
2. Look for Excel-related tools in the available tools list
3. You should see tools like:
- `create_workbook_tool`
- `write_sheet_data_tool`
- `add_chart_tool`
- `create_dashboard_tool`
### 2. Create Your First Excel File
Try this simple example:
```python
# Create a new Excel workbook
create_workbook_tool(
filename="my_first_excel.xlsx",
overwrite=True
)
# Add some data
write_sheet_data_tool(
file_path="my_first_excel.xlsx",
sheet_name="Sheet",
start_cell="A1",
data=[
["Product", "Sales", "Profit"],
["Product A", 10000, 2000],
["Product B", 15000, 3500],
["Product C", 8000, 1200]
]
)
# Save the file
save_workbook_tool("my_first_excel.xlsx")
```
### 3. Create a Professional Table
Enhance your data with professional formatting:
```python
# Create a formatted table
create_formatted_table_tool(
file_path="my_first_excel.xlsx",
sheet_name="Sheet",
start_cell="A1",
data=[
["Product", "Sales", "Profit", "Margin %"],
["Product A", 10000, 2000, "=C2/B2"],
["Product B", 15000, 3500, "=C3/B3"],
["Product C", 8000, 1200, "=C4/B4"]
],
table_name="SalesData",
table_style="TableStyleMedium9",
formats={
"B2:C4": "#,##0", # Number format
"D2:D4": "0.0%", # Percentage format
"A1:D1": { # Header styling
"bold": True,
"fill_color": "4472C4",
"font_color": "FFFFFF"
}
}
)
```
### 4. Add a Chart
Visualize your data:
```python
# Add a column chart
add_chart_tool(
file_path="my_first_excel.xlsx",
sheet_name="Sheet",
chart_type="column",
data_range="A1:B4",
title="Sales by Product",
position="F2",
style="colorful-1"
)
```
## 🎯 Common Tasks
### Creating a Dashboard
```python
# Create a dashboard with multiple visualizations
create_dashboard_tool(
file_path="dashboard.xlsx",
data={
"KPIs": [
["Metric", "Value", "Target", "Status"],
["Revenue", 125000, 120000, "Exceeded"],
["Customers", 1543, 1500, "Exceeded"],
["Satisfaction", 4.5, 4.0, "Exceeded"]
]
},
dashboard_config={
"tables": [
{
"sheet": "Dashboard",
"name": "KPITable",
"range": "KPIs!A1:D4",
"style": "TableStyleDark1"
}
],
"charts": [
{
"sheet": "Dashboard",
"type": "column",
"data_range": "KPIs!A1:B4",
"title": "Performance Metrics",
"position": "F2",
"style": "colorful-3"
}
]
}
)
```
### Importing Data
```python
# Import CSV data
import_data_tool(
excel_file="imported_data.xlsx",
import_config={
"csv": [
{
"file_path": "sales_data.csv",
"sheet_name": "Sales",
"encoding": "utf-8"
}
]
},
create_tables=True
)
```
## 🔍 Troubleshooting
### Python Dependencies
On first run, the server automatically installs required Python packages. If this fails:
1. **Manual installation**:
```bash
pip install fastmcp openpyxl pandas numpy matplotlib xlsxwriter xlrd xlwt
```
2. **Using virtual environment**:
```bash
python -m venv venv
# Windows: venv\Scripts\activate
# Unix/macOS: source venv/bin/activate
pip install -r requirements.txt
```
### Common Issues
#### Server Not Found
- Ensure Node.js and npm are installed: `node --version`
- Try clearing npm cache: `npm cache clean --force`
- Install globally: `npm install -g @guillehr2/excel-mcp-server`
#### MCP Client Doesn't Recognize Server
- Restart your MCP client completely
- Check the configuration file syntax (valid JSON)
- Verify the path in configuration matches your setup
#### Permission Errors
- Windows: Run terminal as Administrator
- Unix/macOS: Check file permissions
- Ensure write access to the directory
#### NPX Cache Issues
If npx is using an old version:
```bash
# Clear npx cache
rmdir /s /q %LOCALAPPDATA%\npm-cache\_npx
# Use specific version
npx @guillehr2/excel-mcp-server@1.0.3
```
### Debug Mode
Enable debug logging for more information:
```bash
# Windows
set EXCEL_MCP_DEBUG=true
npx @guillehr2/excel-mcp-server
# Unix/macOS
export EXCEL_MCP_DEBUG=true
npx @guillehr2/excel-mcp-server
```
## 🎓 Next Steps
1. **Explore Examples**: Check out the [examples collection](examples.md)
2. **API Reference**: Learn about all available tools in the [API reference](api-reference.md)
3. **Advanced Features**: Try creating dashboards and complex reports
4. **Customize**: Modify the server for your specific needs
## 📚 Resources
- [Full Documentation](../README.md)
- [API Reference](api-reference.md)
- [Examples](examples.md)
- [Troubleshooting Guide](troubleshooting.md)
- [GitHub Repository](https://github.com/guillehr2/Excel-MCP-Server-Master)
- [NPM Package](https://www.npmjs.com/package/@guillehr2/excel-mcp-server)
---
**You're now ready to create amazing Excel reports with AI! 🎉**
If you encounter any issues, please check the [troubleshooting guide](troubleshooting.md) or open an issue on GitHub.