# Neo4j GraphRAG MCP Server
[](https://pypi.org/project/mcp-neo4j-graphrag/)
[](https://www.python.org/downloads/)
[](https://opensource.org/licenses/MIT)
An MCP server that extends Neo4j with **vector search**, **fulltext search**, and **search-augmented Cypher queries** for GraphRAG applications.
> **Inspired by** the [Neo4j Labs `mcp-neo4j-cypher`](https://github.com/neo4j-contrib/mcp-neo4j/tree/main/servers/mcp-neo4j-cypher) server. This server adds vector search, fulltext search, and the innovative `search_cypher_query` tool for combining search with graph traversal.
## Overview
This server enables LLMs to:
- π Search Neo4j vector indexes using semantic similarity
- π Search fulltext indexes with Lucene syntax
- β‘ Combine search with Cypher queries via `search_cypher_query`
- πΈοΈ Execute read-only Cypher queries
Built on [LiteLLM](https://docs.litellm.ai/) for multi-provider embedding support (OpenAI, Azure, Bedrock, Cohere, etc.).
> **Related:** For the official Neo4j MCP Server, see [neo4j/mcp](https://github.com/neo4j/mcp). For Neo4j Labs MCP Servers (Cypher, Memory, Data Modeling), see [neo4j-contrib/mcp-neo4j](https://github.com/neo4j-contrib/mcp-neo4j).
## Installation
```bash
# Using pip
pip install mcp-neo4j-graphrag
# Using uv (recommended)
uv pip install mcp-neo4j-graphrag
```
## Configuration
### Claude Desktop
Edit the configuration file:
- **macOS/Linux:** `~/Library/Application Support/Claude/claude_desktop_config.json`
- **Windows:** `%APPDATA%\Claude\claude_desktop_config.json`
```json
{
"mcpServers": {
"neo4j-graphrag": {
"command": "uvx",
"args": ["mcp-neo4j-graphrag"],
"env": {
"NEO4J_URI": "neo4j+s://demo.neo4jlabs.com",
"NEO4J_USERNAME": "recommendations",
"NEO4J_PASSWORD": "recommendations",
"NEO4J_DATABASE": "recommendations",
"OPENAI_API_KEY": "sk-...",
"EMBEDDING_MODEL": "text-embedding-ada-002"
}
}
}
}
```
> **Note**: `uvx` automatically downloads and runs the package from PyPI. No local installation needed!
### Cursor
Edit `~/.cursor/mcp.json` or `.cursor/mcp.json` in your project. Use the same configuration as above.
### Reload Configuration
- **Claude Desktop:** Quit and restart the application
- **Cursor:** Reload the window (Cmd/Ctrl + Shift + P β "Reload Window")
## Tools
### `get_neo4j_schema_and_indexes`
Discover the graph schema, vector indexes, and fulltext indexes.
π‘ The agent should automatically call this tool first before using other tools to understand the schema and indexes of the database.
**Example prompt:**
> "What is inside the database?"
### `vector_search`
Semantic similarity search using embeddings.
**Parameters:** `text_query`, `vector_index`, `top_k`, `return_properties`
**Example prompt:**
> "What movies are about artificial intelligence?"
### `fulltext_search`
Keyword search with Lucene syntax (AND, OR, wildcards, fuzzy).
**Parameters:** `text_query`, `fulltext_index`, `top_k`, `return_properties`
**Example prompt:**
> "find people named Tom"
### `read_neo4j_cypher`
Execute read-only Cypher queries.
**Parameters:** `query`, `params`
**Example prompt:**
> "Show me all genres and how many movies are in each"
### `search_cypher_query`
Combine vector/fulltext search with Cypher queries. Use `$vector_embedding` and `$fulltext_text` placeholders.
**Parameters:** `cypher_query`, `vector_query`, `fulltext_query`, `params`
**Example prompt:**
> "In one query, what are the directors and genres of the movies about 'time travel adventure' "
## Environment Variables
| Variable | Required | Default | Description |
|----------|----------|---------|-------------|
| `NEO4J_URI` | Yes | `bolt://localhost:7687` | Neo4j connection URI |
| `NEO4J_USERNAME` | Yes | `neo4j` | Neo4j username |
| `NEO4J_PASSWORD` | Yes | `password` | Neo4j password |
| `NEO4J_DATABASE` | No | `neo4j` | Database name |
| `EMBEDDING_MODEL` | No | `text-embedding-3-small` | Embedding model (see below) |
### Embedding Providers
Set `EMBEDDING_MODEL` and the corresponding API key:
| Provider | Model Format | API Key Variable |
|----------|-------------|------------------|
| OpenAI | `text-embedding-ada-002` | `OPENAI_API_KEY` |
| Azure | `azure/deployment-name` | `AZURE_API_KEY`, `AZURE_API_BASE` |
| Bedrock | `bedrock/amazon.titan-embed-text-v1` | `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY` |
| Cohere | `cohere/embed-english-v3.0` | `COHERE_API_KEY` |
| Ollama | `ollama/nomic-embed-text` | *(none - local)* |
## Advanced Topics
See [docs/ADVANCED.md](docs/ADVANCED.md) for:
- Comparison with Neo4j Labs `mcp-neo4j-cypher` server
- Production features (output sanitization, token limits)
- Detailed tool documentation
## License
MIT License