Skip to main content
Glama

Claude Code MCP Enhanced

by grahama1970
boomerang-flow.md2.92 kB
```mermaid %%{init: { 'theme': 'neutral', 'themeVariables': { 'primaryColor': '#8be9fd', 'primaryTextColor': '#282a36', 'primaryBorderColor': '#6272a4', 'lineColor': '#6272a4', 'secondaryColor': '#bd93f9', 'tertiaryColor': '#ffb86c' } }}%% flowchart TB classDef parent fill:#bd93f9,stroke:#6272a4,stroke-width:2px,color:#282a36 classDef subtask fill:#8be9fd,stroke:#6272a4,stroke-width:2px,color:#282a36 classDef result fill:#50fa7b,stroke:#6272a4,stroke-width:2px,color:#282a36 classDef taskList fill:#ffb86c,stroke:#6272a4,stroke-width:2px,color:#282a36 User(["🧑‍💻 User Request"]) Claude["🤖 Claude (Parent Agent)"] TaskList["📋 Task List"] SubtaskA["🔍 Subtask A\n(Analysis)"] SubtaskB["⚙️ Subtask B\n(Implementation)"] SubtaskC["🧪 Subtask C\n(Testing)"] ResultA["📊 Result A"] ResultB["📊 Result B"] ResultC["📊 Result C"] FinalResult["✅ Final Result"] User -->|"Complex Request"| Claude Claude -->|"1. Creates"| TaskList Claude -->|"2. Delegates\nparentTaskId='task-123'\nreturnMode='summary'"| SubtaskA SubtaskA -->|"3. Executes"| ResultA ResultA -->|"4. Returns with\nBOOMERANG_RESULT\nmarker"| Claude Claude -->|"5. Updates"| TaskList Claude -->|"6. Delegates\nparentTaskId='task-123'\nreturnMode='summary'"| SubtaskB SubtaskB -->|"7. Executes"| ResultB ResultB -->|"8. Returns with\nBOOMERANG_RESULT\nmarker"| Claude Claude -->|"9. Updates"| TaskList Claude -->|"10. Delegates\nparentTaskId='task-123'\nreturnMode='summary'"| SubtaskC SubtaskC -->|"11. Executes"| ResultC ResultC -->|"12. Returns with\nBOOMERANG_RESULT\nmarker"| Claude Claude -->|"13. Updates"| TaskList Claude -->|"14. Compiles results"| FinalResult FinalResult -->|"15. Returns consolidated results"| User class Claude parent class TaskList taskList class SubtaskA,SubtaskB,SubtaskC subtask class ResultA,ResultB,ResultC,FinalResult result ``` The above Mermaid chart illustrates the Task Orchestration (Boomerang Pattern) workflow: 1. The user makes a complex request to Claude (Parent Agent) 2. Claude creates a structured task list to break down the work 3. Claude delegates Subtask A with a parent task ID and specified return mode 4. Subtask A executes its specific function (Analysis) 5. Results from Subtask A return to Claude with a BOOMERANG_RESULT marker 6. Claude updates the task list with the results and marks the subtask as complete 7. The process repeats for Subtask B (Implementation) and Subtask C (Testing) 8. Claude compiles all results into a final consolidated response 9. The complete solution is returned to the user This pattern allows complex workflows to be broken down into specialized, manageable subtasks while maintaining context and tracking progress throughout the entire process.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/grahama1970/claude-code-mcp-enhanced'

If you have feedback or need assistance with the MCP directory API, please join our Discord server