// Copyright 2025 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package bigqueryanalyzecontribution
import (
"context"
"fmt"
"strings"
bigqueryapi "cloud.google.com/go/bigquery"
yaml "github.com/goccy/go-yaml"
"github.com/google/uuid"
"github.com/googleapis/genai-toolbox/internal/sources"
bigqueryds "github.com/googleapis/genai-toolbox/internal/sources/bigquery"
"github.com/googleapis/genai-toolbox/internal/tools"
bqutil "github.com/googleapis/genai-toolbox/internal/tools/bigquery/bigquerycommon"
"github.com/googleapis/genai-toolbox/internal/util/parameters"
bigqueryrestapi "google.golang.org/api/bigquery/v2"
"google.golang.org/api/iterator"
)
const kind string = "bigquery-analyze-contribution"
func init() {
if !tools.Register(kind, newConfig) {
panic(fmt.Sprintf("tool kind %q already registered", kind))
}
}
func newConfig(ctx context.Context, name string, decoder *yaml.Decoder) (tools.ToolConfig, error) {
actual := Config{Name: name}
if err := decoder.DecodeContext(ctx, &actual); err != nil {
return nil, err
}
return actual, nil
}
type compatibleSource interface {
BigQueryClient() *bigqueryapi.Client
BigQueryRestService() *bigqueryrestapi.Service
BigQueryClientCreator() bigqueryds.BigqueryClientCreator
UseClientAuthorization() bool
IsDatasetAllowed(projectID, datasetID string) bool
BigQueryAllowedDatasets() []string
BigQuerySession() bigqueryds.BigQuerySessionProvider
}
type Config struct {
Name string `yaml:"name" validate:"required"`
Kind string `yaml:"kind" validate:"required"`
Source string `yaml:"source" validate:"required"`
Description string `yaml:"description" validate:"required"`
AuthRequired []string `yaml:"authRequired"`
}
// validate interface
var _ tools.ToolConfig = Config{}
func (cfg Config) ToolConfigKind() string {
return kind
}
func (cfg Config) Initialize(srcs map[string]sources.Source) (tools.Tool, error) {
// verify source exists
rawS, ok := srcs[cfg.Source]
if !ok {
return nil, fmt.Errorf("no source named %q configured", cfg.Source)
}
// verify the source is compatible
s, ok := rawS.(compatibleSource)
if !ok {
return nil, fmt.Errorf("invalid source for %q tool: source %q not compatible", kind, cfg.Source)
}
allowedDatasets := s.BigQueryAllowedDatasets()
inputDataDescription := "The data that contain the test and control data to analyze. Can be a fully qualified BigQuery table ID or a SQL query."
if len(allowedDatasets) > 0 {
datasetIDs := []string{}
for _, ds := range allowedDatasets {
datasetIDs = append(datasetIDs, fmt.Sprintf("`%s`", ds))
}
inputDataDescription += fmt.Sprintf(" The query or table must only access datasets from the following list: %s.", strings.Join(datasetIDs, ", "))
}
inputDataParameter := parameters.NewStringParameter("input_data", inputDataDescription)
contributionMetricParameter := parameters.NewStringParameter("contribution_metric",
`The name of the column that contains the metric to analyze.
Provides the expression to use to calculate the metric you are analyzing.
To calculate a summable metric, the expression must be in the form SUM(metric_column_name),
where metric_column_name is a numeric data type.
To calculate a summable ratio metric, the expression must be in the form
SUM(numerator_metric_column_name)/SUM(denominator_metric_column_name),
where numerator_metric_column_name and denominator_metric_column_name are numeric data types.
To calculate a summable by category metric, the expression must be in the form
SUM(metric_sum_column_name)/COUNT(DISTINCT categorical_column_name). The summed column must be a numeric data type.
The categorical column must have type BOOL, DATE, DATETIME, TIME, TIMESTAMP, STRING, or INT64.`)
isTestColParameter := parameters.NewStringParameter("is_test_col",
"The name of the column that identifies whether a row is in the test or control group.")
dimensionIDColsParameter := parameters.NewArrayParameterWithRequired("dimension_id_cols",
"An array of column names that uniquely identify each dimension.", false, parameters.NewStringParameter("dimension_id_col", "A dimension column name."))
topKInsightsParameter := parameters.NewIntParameterWithDefault("top_k_insights_by_apriori_support", 30,
"The number of top insights to return, ranked by apriori support.")
pruningMethodParameter := parameters.NewStringParameterWithDefault("pruning_method", "PRUNE_REDUNDANT_INSIGHTS",
"The method to use for pruning redundant insights. Can be 'NO_PRUNING' or 'PRUNE_REDUNDANT_INSIGHTS'.")
params := parameters.Parameters{
inputDataParameter,
contributionMetricParameter,
isTestColParameter,
dimensionIDColsParameter,
topKInsightsParameter,
pruningMethodParameter,
}
mcpManifest := tools.GetMcpManifest(cfg.Name, cfg.Description, cfg.AuthRequired, params, nil)
// finish tool setup
t := Tool{
Config: cfg,
Parameters: params,
manifest: tools.Manifest{Description: cfg.Description, Parameters: params.Manifest(), AuthRequired: cfg.AuthRequired},
mcpManifest: mcpManifest,
}
return t, nil
}
// validate interface
var _ tools.Tool = Tool{}
type Tool struct {
Config
Parameters parameters.Parameters `yaml:"parameters"`
manifest tools.Manifest
mcpManifest tools.McpManifest
}
func (t Tool) ToConfig() tools.ToolConfig {
return t.Config
}
// Invoke runs the contribution analysis.
func (t Tool) Invoke(ctx context.Context, resourceMgr tools.SourceProvider, params parameters.ParamValues, accessToken tools.AccessToken) (any, error) {
source, err := tools.GetCompatibleSource[compatibleSource](resourceMgr, t.Source, t.Name, t.Kind)
if err != nil {
return nil, err
}
paramsMap := params.AsMap()
inputData, ok := paramsMap["input_data"].(string)
if !ok {
return nil, fmt.Errorf("unable to cast input_data parameter %s", paramsMap["input_data"])
}
bqClient := source.BigQueryClient()
restService := source.BigQueryRestService()
// Initialize new client if using user OAuth token
if source.UseClientAuthorization() {
tokenStr, err := accessToken.ParseBearerToken()
if err != nil {
return nil, fmt.Errorf("error parsing access token: %w", err)
}
bqClient, restService, err = source.BigQueryClientCreator()(tokenStr, true)
if err != nil {
return nil, fmt.Errorf("error creating client from OAuth access token: %w", err)
}
}
modelID := fmt.Sprintf("contribution_analysis_model_%s", strings.ReplaceAll(uuid.New().String(), "-", ""))
var options []string
options = append(options, "MODEL_TYPE = 'CONTRIBUTION_ANALYSIS'")
options = append(options, fmt.Sprintf("CONTRIBUTION_METRIC = '%s'", paramsMap["contribution_metric"]))
options = append(options, fmt.Sprintf("IS_TEST_COL = '%s'", paramsMap["is_test_col"]))
if val, ok := paramsMap["dimension_id_cols"]; ok {
if cols, ok := val.([]any); ok {
var strCols []string
for _, c := range cols {
strCols = append(strCols, fmt.Sprintf("'%s'", c))
}
options = append(options, fmt.Sprintf("DIMENSION_ID_COLS = [%s]", strings.Join(strCols, ", ")))
} else {
return nil, fmt.Errorf("unable to cast dimension_id_cols parameter %s", paramsMap["dimension_id_cols"])
}
}
if val, ok := paramsMap["top_k_insights_by_apriori_support"]; ok {
options = append(options, fmt.Sprintf("TOP_K_INSIGHTS_BY_APRIORI_SUPPORT = %v", val))
}
if val, ok := paramsMap["pruning_method"].(string); ok {
upperVal := strings.ToUpper(val)
if upperVal != "NO_PRUNING" && upperVal != "PRUNE_REDUNDANT_INSIGHTS" {
return nil, fmt.Errorf("invalid pruning_method: %s", val)
}
options = append(options, fmt.Sprintf("PRUNING_METHOD = '%s'", upperVal))
}
var inputDataSource string
trimmedUpperInputData := strings.TrimSpace(strings.ToUpper(inputData))
if strings.HasPrefix(trimmedUpperInputData, "SELECT") || strings.HasPrefix(trimmedUpperInputData, "WITH") {
if len(source.BigQueryAllowedDatasets()) > 0 {
var connProps []*bigqueryapi.ConnectionProperty
session, err := source.BigQuerySession()(ctx)
if err != nil {
return nil, fmt.Errorf("failed to get BigQuery session: %w", err)
}
if session != nil {
connProps = []*bigqueryapi.ConnectionProperty{
{Key: "session_id", Value: session.ID},
}
}
dryRunJob, err := bqutil.DryRunQuery(ctx, restService, source.BigQueryClient().Project(), source.BigQueryClient().Location, inputData, nil, connProps)
if err != nil {
return nil, fmt.Errorf("query validation failed: %w", err)
}
statementType := dryRunJob.Statistics.Query.StatementType
if statementType != "SELECT" {
return nil, fmt.Errorf("the 'input_data' parameter only supports a table ID or a SELECT query. The provided query has statement type '%s'", statementType)
}
queryStats := dryRunJob.Statistics.Query
if queryStats != nil {
for _, tableRef := range queryStats.ReferencedTables {
if !source.IsDatasetAllowed(tableRef.ProjectId, tableRef.DatasetId) {
return nil, fmt.Errorf("query in input_data accesses dataset '%s.%s', which is not in the allowed list", tableRef.ProjectId, tableRef.DatasetId)
}
}
} else {
return nil, fmt.Errorf("could not analyze query in input_data to validate against allowed datasets")
}
}
inputDataSource = fmt.Sprintf("(%s)", inputData)
} else {
if len(source.BigQueryAllowedDatasets()) > 0 {
parts := strings.Split(inputData, ".")
var projectID, datasetID string
switch len(parts) {
case 3: // project.dataset.table
projectID, datasetID = parts[0], parts[1]
case 2: // dataset.table
projectID, datasetID = source.BigQueryClient().Project(), parts[0]
default:
return nil, fmt.Errorf("invalid table ID format for 'input_data': %q. Expected 'dataset.table' or 'project.dataset.table'", inputData)
}
if !source.IsDatasetAllowed(projectID, datasetID) {
return nil, fmt.Errorf("access to dataset '%s.%s' (from table '%s') is not allowed", projectID, datasetID, inputData)
}
}
inputDataSource = fmt.Sprintf("SELECT * FROM `%s`", inputData)
}
// Use temp model to skip the clean up at the end. To use TEMP MODEL, queries have to be
// in the same BigQuery session.
createModelSQL := fmt.Sprintf("CREATE TEMP MODEL %s OPTIONS(%s) AS %s",
modelID,
strings.Join(options, ", "),
inputDataSource,
)
createModelQuery := bqClient.Query(createModelSQL)
// Get session from provider if in protected mode.
// Otherwise, a new session will be created by the first query.
session, err := source.BigQuerySession()(ctx)
if err != nil {
return nil, fmt.Errorf("failed to get BigQuery session: %w", err)
}
if session != nil {
createModelQuery.ConnectionProperties = []*bigqueryapi.ConnectionProperty{
{Key: "session_id", Value: session.ID},
}
} else {
// If not in protected mode, create a session for this invocation.
createModelQuery.CreateSession = true
}
createModelJob, err := createModelQuery.Run(ctx)
if err != nil {
return nil, fmt.Errorf("failed to start create model job: %w", err)
}
status, err := createModelJob.Wait(ctx)
if err != nil {
return nil, fmt.Errorf("failed to wait for create model job: %w", err)
}
if err := status.Err(); err != nil {
return nil, fmt.Errorf("create model job failed: %w", err)
}
// Determine the session ID to use for subsequent queries.
// It's either from the pre-existing session (protected mode) or the one just created.
var sessionID string
if session != nil {
sessionID = session.ID
} else if status.Statistics != nil && status.Statistics.SessionInfo != nil {
sessionID = status.Statistics.SessionInfo.SessionID
} else {
return nil, fmt.Errorf("failed to get or create a BigQuery session ID")
}
getInsightsSQL := fmt.Sprintf("SELECT * FROM ML.GET_INSIGHTS(MODEL %s)", modelID)
getInsightsQuery := bqClient.Query(getInsightsSQL)
getInsightsQuery.ConnectionProperties = []*bigqueryapi.ConnectionProperty{{Key: "session_id", Value: sessionID}}
job, err := getInsightsQuery.Run(ctx)
if err != nil {
return nil, fmt.Errorf("failed to execute get insights query: %w", err)
}
it, err := job.Read(ctx)
if err != nil {
return nil, fmt.Errorf("unable to read query results: %w", err)
}
var out []any
for {
var row map[string]bigqueryapi.Value
err := it.Next(&row)
if err == iterator.Done {
break
}
if err != nil {
return nil, fmt.Errorf("failed to iterate through query results: %w", err)
}
vMap := make(map[string]any)
for key, value := range row {
vMap[key] = value
}
out = append(out, vMap)
}
if len(out) > 0 {
return out, nil
}
// This handles the standard case for a SELECT query that successfully
// executes but returns zero rows.
return "The query returned 0 rows.", nil
}
func (t Tool) ParseParams(data map[string]any, claims map[string]map[string]any) (parameters.ParamValues, error) {
return parameters.ParseParams(t.Parameters, data, claims)
}
func (t Tool) Manifest() tools.Manifest {
return t.manifest
}
func (t Tool) McpManifest() tools.McpManifest {
return t.mcpManifest
}
func (t Tool) Authorized(verifiedAuthServices []string) bool {
return tools.IsAuthorized(t.AuthRequired, verifiedAuthServices)
}
func (t Tool) RequiresClientAuthorization(resourceMgr tools.SourceProvider) (bool, error) {
source, err := tools.GetCompatibleSource[compatibleSource](resourceMgr, t.Source, t.Name, t.Kind)
if err != nil {
return false, err
}
return source.UseClientAuthorization(), nil
}
func (t Tool) GetAuthTokenHeaderName(resourceMgr tools.SourceProvider) (string, error) {
return "Authorization", nil
}